Constructing rational maps from subdivision rules

Author:

Cannon J.,Floyd W.,Kenyon R.,Parry W.

Abstract

Suppose R \mathcal {R} is an orientation-preserving finite subdivision rule with an edge pairing. Then the subdivision map σ R \sigma _{\mathcal {R}} is either a homeomorphism, a covering of a torus, or a critically finite branched covering of a 2-sphere. If R \mathcal {R} has mesh approaching 0 0 and S R S_{\mathcal {R}} is a 2-sphere, it is proved in Theorem 3.1 that if R \mathcal {R} is conformal, then σ R \sigma _{\mathcal {R}} is realizable by a rational map. Furthermore, a general construction is given which, starting with a one-tile rotationally invariant finite subdivision rule, produces a finite subdivision rule Q \mathcal {Q} with an edge pairing such that σ Q \sigma _{\mathcal {Q}} is realizable by a rational map.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference25 articles.

1. A “regular” pentagonal tiling of the plane;Bowers, Philip L.;Conform. Geom. Dyn.,1997

2. A census of rational maps;Brezin, Eva;Conform. Geom. Dyn.,2000

3. Invariant sets under iteration of rational functions;Brolin, Hans;Ark. Mat.,1965

4. The combinatorial Riemann mapping theorem;Cannon, James W.;Acta Math.,1994

5. Recognizing constant curvature discrete groups in dimension 3;Cannon, J. W.;Trans. Amer. Math. Soc.,1998

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eliminating Thurston obstructions and controlling dynamics on curves;Ergodic Theory and Dynamical Systems;2024-01-17

2. Levy and Thurston obstructions of finite subdivision rules;Ergodic Theory and Dynamical Systems;2023-12-15

3. Conformal tilings II: Local isomorphism, hierarchy, and conformal type;Conformal Geometry and Dynamics of the American Mathematical Society;2019-04-26

4. Quasisymmetric uniformization and heat kernel estimates;Transactions of the American Mathematical Society;2019-04-25

5. Expansion properties for finite subdivision rules I;Science China Mathematics;2018-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3