Normal coverings of hyperelliptic real algebraic curves

Author:

Bujalance E.,Cirre F.,Gamboa J.

Abstract

We consider normal (possibly) branched, finite-sheeted coverings π : X X \pi :X\rightarrow X’ between hyperelliptic real algebraic curves. We are interested in the topology of such coverings and also in describing them in terms of algebraic equations. In this article we completely solve these two problems in case X X has the maximum number of ovals within its genus. We first analyze the topological features and ramification data of such coverings. For each isomorphism class we then describe a representative, with defining polynomial equations for X X and for X X’ , formulae for generators of the covering transformation group, and a rational formula for the covering π : X X \pi :X\rightarrow X’ .

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference18 articles.

1. On lifting the hyperelliptic involution;Accola, Robert D. M.;Proc. Amer. Math. Soc.,1994

2. Notas de Matem\'{a}tica [Mathematical Notes];Alling, Norman L.,1981

3. Lecture Notes in Mathematics, Vol. 219;Alling, Norman L.,1971

4. A classification of unramified double coverings of hyperelliptic Riemann surfaces;Bujalance, E.;Arch. Math. (Basel),1986

5. E. Bujalance, F. J. Cirre, J. M. Gamboa, Double coverings of hyperelliptic real algebraic curves, submitted.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral maps associated to semialgebraic branched coverings;Revista Matemática Complutense;2021-01-02

2. On pq-fold regular covers of the projective line;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2020-11-20

3. Normal coverings of hyperelliptic real Riemann surfaces;Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3