On the symplectic type of isomorphisms of the 𝑝-torsion of elliptic curves

Author:

Freitas Nuno,Kraus Alain

Abstract

Let p 3 p \geq 3 be a prime. Let E / Q E/\mathbb {Q} and E / Q E’/\mathbb {Q} be elliptic curves with isomorphic p p -torsion modules E [ p ] E[p] and E [ p ] E’[p] . Assume further that either (i) every G Q G_\mathbb {Q} -modules isomorphism ϕ : E [ p ] E [ p ] \phi : E[p] \to E’[p] admits a multiple λ ϕ \lambda \cdot \phi with λ F p × \lambda \in \mathbb {F}_p^\times preserving the Weil pairing; or (ii) no G Q G_\mathbb {Q} -isomorphism ϕ : E [ p ] E [ p ] \phi : E[p] \to E’[p] preserves the Weil pairing. This paper considers the problem of deciding if we are in case (i) or (ii).

Our approach is to consider the problem locally at a prime p \ell \neq p . Firstly, we determine the primes \ell for which the local curves E / Q E/\mathbb {Q}_\ell and E / Q E’/\mathbb {Q}_\ell contain enough information to decide between (i) or (ii). Secondly, we establish a collection of criteria, in terms of the standard invariants associated to minimal Weierstrass models of E / Q E/\mathbb {Q}_\ell and E / Q E’/\mathbb {Q}_\ell , to decide between (i) and (ii). We show that our results give a complete solution to the problem by local methods away from  p p .

We apply our methods to show the non-existence of rational points on certain hyperelliptic curves of the form y 2 = x p y^2 = x^p - \ell and y 2 = x p 2 y^2 = x^p - 2\ell where \ell is a prime; we also give incremental results on the Fermat equation x 2 + y 3 = z p x^2 + y^3 = z^p . As a different application, we discuss variants of a question raised by Mazur concerning the existence of symplectic isomorphisms between the p p -torsion of two non-isogenous elliptic curves defined over Q \mathbb {Q} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference51 articles.

1. Explicit Chabauty-Kim for the split Cartan modular curve of level 13;Balakrishnan, Jennifer;Ann. of Math. (2),2019

2. Sums of two cubes as twisted perfect powers, revisited;Bennett, Michael A.;Algebra Number Theory,2018

3. N. Billerey, 17-congruent elliptic curves, \url{http://math.univ-bpclermont.fr/ billerey/Miscellaneous/17congruent.pdf}.

4. N. Billerey, On some remarkable congruences between two elliptic curves, arXiv:1605.09205.

5. Rational points on 𝑋⁺₀(𝑝^{𝑟});Bilu, Yuri;Ann. Inst. Fourier (Grenoble),2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the solutions of some Lebesgue–Ramanujan–Nagell type equations;International Journal of Number Theory;2024-04-06

2. On 12-congruences of elliptic curves;International Journal of Number Theory;2023-11-23

3. Two results on ^{}+^{}=^{};Proceedings of the American Mathematical Society;2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3