Characteristic elements for 𝑝-torsion Iwasawa modules

Author:

Ardakov Konstantin,Wadsley Simon

Abstract

Let G G be a compact p p -adic analytic group with no elements of order p p . We provide a formula for the characteristic element (J. Coates, et. al., The G L 2 GL_2 main conjecture for elliptic curves without complex multiplication, preprint) of any finitely generated p p -torsion module M M over the Iwasawa algebra Λ G \Lambda _G of G G in terms of twisted μ \mu -invariants of M M , which are defined using the Euler characteristics of M M and its twists. A version of the Artin formalism is proved for these characteristic elements. We characterize those groups having the property that every finitely generated pseudo-null p p -torsion module has trivial characteristic element as the p p -nilpotent groups. It is also shown that these are precisely the groups which have the property that every finitely generated p p -torsion module has integral Euler characteristic. Under a slightly weaker condition on G G we decompose the completed group algebra Ω G \Omega _G of G G with coefficients in F p \mathbb {F}_p into blocks and show that each block is prime; this generalizes a result of Ardakov and Brown (Primeness, semiprimeness and localisation in Iwasawa Algebras, submitted). We obtain a generalization of a result of Osima (On primary decomposable group rings, Proc. Phy-Math. Soc. Japan (3) 24 (1942) 1–9), characterizing the groups G G which have the property that every block of Ω G \Omega _G is local. Finally, we compute the ranks of the K 0 K_0 group of Ω G \Omega _G and of its classical ring of quotients Q ( Ω G ) Q(\Omega _G) whenever the latter is semisimple.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference19 articles.

1. AB K. Ardakov, K. A. Brown, Primeness, semiprimeness and localisation in Iwasawa Algebras, submitted.

2. Pseudocompact algebras, profinite groups and class formations;Brumer, Armand;J. Algebra,1966

3. CFKSV J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, The 𝐺𝐿₂ main conjecture for elliptic curves without complex multiplication, preprint, arXiv math NT/0404297.

4. Auslander-Gorenstein rings for beginners;Clark, John,2001

5. Modules over Iwasawa algebras;Coates, J.;J. Inst. Math. Jussieu,2003

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximal prime homomorphic images of mod-p Iwasawa algebras;MATH PROC CAMBRIDGE;2021

2. Maximal prime homomorphic images of mod-p Iwasawa algebras;Mathematical Proceedings of the Cambridge Philosophical Society;2021-03-05

3. Control theorem and functional equation of Selmer groups over p-adic Lie extensions;Selecta Mathematica;2020-11

4. Non-communtative Iwasawa main conjecture;International Journal of Number Theory;2020-07-14

5. On the cohomology of integral p-adic unipotent radicals;Communications in Algebra;2020-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3