Tropical floor plans and enumeration of complex and real multi-nodal surfaces

Author:

Markwig Hannah,Markwig Thomas,Shaw Kris,Shustin Eugenii

Abstract

The family of complex projective surfaces in P 3 \mathbb {P}^3 of degree d d having precisely δ \delta nodes as their only singularities has codimension δ \delta in the linear system | O P 3 ( d ) | |{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large d d and is of degree N δ , C P 3 ( d ) = ( 4 ( d 1 ) 3 ) δ / δ ! + O ( d 3 δ 3 ) N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}) . In particular, N δ , C P 3 ( d ) N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in d d .

By means of tropical geometry, we explicitly describe ( 4 d 3 ) δ / δ ! + O ( d 3 δ 1 ) (4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n = ( d + 3 3 ) δ 1 n=\binom {d+3}{3}-\delta -1 points in P 3 \mathbb {P}^3 . These surfaces are close to tropical limits which we characterize combinatorially, introducing the concept of floor plans for multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams (a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a multinodal tropical surface S S which are sufficient to reconstruct S S .

In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying point conditions. We show that, for a special configuration w \boldsymbol {w} of real points, the number N δ , R P 3 ( d , w ) N_{\delta ,\mathbb {R}}^{\mathbb {P}^3}(d,\boldsymbol {w}) of real surfaces of degree d d having δ \delta real nodes and passing through w \boldsymbol {w} is bounded from below by ( 3 2 d 3 ) δ / δ ! + O ( d 3 δ 1 ) \left (\frac {3}{2}d^3\right )^\delta /\delta ! +O(d^{3\delta -1}) .

We prove analogous statements for counts of multinodal surfaces in P 1 × P 2 \mathbb {P}^1\times \mathbb {P}^2 and P 1 × P 1 × P 1 \mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1 .

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference12 articles.

1. Benoit Bertrand, Énumération des courbes réelles: étude de la maximalité, In preparation.

2. Planar tropical cubic curves of any genus, and higher dimensional generalisations;Bertrand, Benoît;Enseign. Math.,2018

3. Madeline Brandt and Alheydis Geiger, A tropical count of binodal cubic surfaces, Le Matematiche 75 (2020), no. 2, 627–649.

4. Floor decompositions of tropical curves: the planar case;Brugallé, Erwan,2009

5. Singular hypersurfaces, versality, and Gorenstein algebras;du Plessis, A. A.;J. Algebraic Geom.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3