On a conjectural symmetric version of Ehrhard’s inequality

Author:

Livshyts Galyna

Abstract

We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting J k 1 ( s ) = 0 s t k 1 e t 2 2 d t J_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt and c k 1 = J k 1 ( + ) c_{k-1}=J_{k-1}(+\infty ) , we conjecture that the function F : [ 0 , 1 ] R F:[0,1]\rightarrow \mathbb {R} , given by F ( a ) = k = 1 n 1 a E k ( β k J k 1 1 ( c k 1 a ) + α k ) \begin{equation*} F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (with an appropriate choice of a decomposition [ 0 , 1 ] = i E i [0,1]=\cup _{i} E_i and coefficients α i , β i \alpha _i, \beta _i ) satisfies, for all symmetric convex sets K K and L L , and any λ [ 0 , 1 ] \lambda \in [0,1] , F ( γ ( λ K + ( 1 λ ) L ) ) λ F ( γ ( K ) ) + ( 1 λ ) F ( γ ( L ) ) . \begin{equation*} F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ). \end{equation*} We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set K K , its Gaussian concavity power p s ( K , γ ) p_s(K,\gamma ) is greater than or equal to p s ( R B 2 k × R n k , γ ) p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ) , for some k { 1 , , n } k\in \{1,\dots ,n\} . We call the sets R B 2 k × R n k RB^k_2\times \mathbb {R}^{n-k} round k k -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94].

In this manuscript, we make progress towards this question, and show that for any symmetric convex set K K in R n \mathbb {R}^n , p s ( K , γ ) sup F L 2 ( K , γ ) L i p ( K ) : F = 1 ( 2 T γ F ( K ) V a r ( F ) ) + 1 n E X 2 , \begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} where T γ F ( K ) T_{\gamma }^F(K) is the F F- torsional rigidity of K K with respect to the Gaussian measure. Moreover, the equality holds if and only if K = R B 2 k × R n k K=RB^k_2\times \mathbb {R}^{n-k} for some R > 0 R>0 and k = 1 , , n k=1,\dots ,n . As a consequence, we get p s ( K , γ ) Q ( E | X | 2 , E X K 4 , E X K 2 , r ( K ) ) , \begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} where Q Q is a certain rational function of degree 2 2 , the expectation is taken with respect to the restriction of the Gaussian measure onto K K , K \|\cdot \|_K is the Minkowski functional of K K , and r ( K ) r(K) is the in-radius of K K . The result follows via a combination of some novel estimates, the L 2 L2 method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185; Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity.

As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments.

In addition, we provide a non-sharp estimate for a function F F whose composition with γ ( K ) \gamma (K) is concave in the Minkowski sense for all symmetric convex sets.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference88 articles.

1. Mathematical Surveys and Monographs;Artstein-Avidan, Shiri,2015

2. Extremizers and stability of the Betke-Weil inequality;Bartha, Ferenc A.;Michigan Math. J.,2024

3. An isoperimetric result for the Gaussian measure and unconditional sets;Barthe, F.;Bull. London Math. Soc.,2001

4. Spectral gaps, symmetries and log-concave perturbations;Barthe, Frank;Bull. Hellenic Math. Soc.,2020

5. Symmetry of minimizers of a Gaussian isoperimetric problem;Barchiesi, Marco;Probab. Theory Related Fields,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3