Comparison of the matched asymptotic expansions method and the two-variable technique

Author:

Bouthier M.

Abstract

Either the matched asymptotic expansions method or the two-variable technique are available for treating boundary layer problems. A comparison of the two methods is achieved on dealing with elliptic boundary value problems. The two-variable technique is proved to be slightly more powerful than the matched expansions method. Nevertheless it fails to determine a closed class of approximate solutions. Such a class, which involves the results of both the asymptotic methods is set out with help of an asymptotic equivalence theorem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference18 articles.

1. M. Bouthier, Développements asymptotiques à deux types d’échelles et perturbation singulière de problèmes aux limites elliptiques, Paris, Thèse d’Etat, Université Paris 6, 1977

2. The two-variable technique for singular partial differential problems and its justification;Bouthier, M.;Quart. Appl. Math.,1980

3. G. Comstock, Singular perturbation of elliptic equations, SIAM J. Appl. Math. 20, 491–502 (1971)

4. Studies in Mathematics and its Applications;Eckhaus, Wiktor,1979

5. Two-variable expansions for singular perturbations;Erdélyi, A.;J. Inst. Math. Appl.,1968

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic approximations for pure bending of thin cylindrical shells;Zeitschrift für angewandte Mathematik und Physik;2017-07-04

2. Multiple Scales;Texts in Applied Mathematics;2013

3. On the asymptotic solution of scattering from slender bodies by the two‐variable technique;The Journal of the Acoustical Society of America;1992-01

4. The equivalence between two perturbation methods in weakly nonlinear stability theory for parallel shear flows;Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences;1989-08-08

5. Angepaßte asymptotische Entwicklungen (Partielle Differentialgleichungen);Höhere mathematische Methoden für Ingenieure und Physiker;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3