A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers

Author:

Bugeaud Yann,Kim Dong Han

Abstract

We introduce and study a new complexity function in combinatorics on words, which takes into account the smallest second occurrence time of a factor of an infinite word. We characterize the eventually periodic words and the Sturmian words by means of this function. Then, we establish a new result on repetitions in Sturmian words and show that it is best possible. Let b 2 b \ge 2 be an integer. We deduce a lower bound for the irrationality exponent of real numbers whose sequence of b b -ary digits is a Sturmian sequence over { 0 , 1 , , b 1 } \{0, 1, \ldots , b-1\} and we prove that this lower bound is best possible. As an application, we derive some information on the b b -ary expansion of log ( 1 + 1 a ) \log (1 + \frac {1}{a}) for any integer a 34 a \ge 34 .

Funder

National Research Foundation of Korea

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference39 articles.

1. On the expansion of some exponential periods in an integer base;Adamczewski, Boris;Math. Ann.,2010

2. Dynamics for 𝛽-shifts and Diophantine approximation;Adamczewski, Boris;Ergodic Theory Dynam. Systems,2007

3. On the complexity of algebraic numbers. I. Expansions in integer bases;Adamczewski, Boris;Ann. of Math. (2),2007

4. Nombres réels de complexité sous-linéaire: mesures d’irrationalité et de transcendance;Adamczewski, Boris;J. Reine Angew. Math.,2011

5. Sur la complexité des nombres algébriques;Adamczewski, Boris;C. R. Math. Acad. Sci. Paris,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Initial nonrepetitive complexity of regular episturmian words and their Diophantine exponents;European Journal of Combinatorics;2024-05

2. Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers;Annales de l'Institut Fourier;2023-10-09

3. A gap of the exponents of repetitions of Sturmian words;Moscow Journal of Combinatorics and Number Theory;2021-09-13

4. How to prove that a sequence is not automatic;Expositiones Mathematicae;2021-09

5. Synchronized Sequences;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3