P. Jones’ interpolation theorem for noncommutative martingale Hardy spaces

Author:

Randrianantoanina Narcisse

Abstract

Let M \mathcal {M} be a semifinite von Nemann algebra equipped with an increasing filtration ( M n ) n 1 (\mathcal {M}_n)_{n\geq 1} of (semifinite) von Neumann subalgebras of M \mathcal {M} . For 0 > p 0>p \leq \infty , let h p c ( M ) \mathsf {h}_p^c(\mathcal {M}) denote the noncommutative column conditioned martingale Hardy space associated with the filtration ( M n ) n 1 (\mathcal {M}_n)_{n\geq 1} and the index p p . We prove that for 0 > p > 0>p>\infty , the compatible couple ( h p c ( M ) , h c ( M ) ) \big (\mathsf {h}_p^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big ) is K K -closed in the couple ( L p ( N ) , L ( N ) ) \big (L_p(\mathcal {N}), L_\infty (\mathcal {N}) \big ) for an appropriate amplified semifinite von Neumann algebra N M \mathcal {N}\supset \mathcal {M} . This may be viewed as a noncommutative analogue of P. Jones interpolation of the couple ( H 1 , H ) (H_1, H_\infty ) .

As an application, we prove a general automatic transfer of real interpolation results from couples of symmetric quasi-Banach function spaces to the corresponding couples of noncommutative conditioned martingale Hardy spaces. More precisely, assume that E E is a symmetric quasi-Banach function space on ( 0 , ) (0, \infty ) satisfying some natural conditions, 0 > θ > 1 0>\theta >1 , and 0 > r 0>r\leq \infty . If ( E , L ) θ , r = F (E,L_\infty )_{\theta ,r}=F , then \[ ( h E c ( M ) , h c ( M ) ) θ , r = h F c ( M ) . \big (\mathsf {h}_E^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big )_{\theta , r}=\mathsf {h}_{F}^c(\mathcal {M}). \] As an illustration, we obtain that if Φ \Phi is an Orlicz function that is p p -convex and q q -concave for some 0 > p q > 0>p\leq q>\infty , then the following interpolation on the noncommutative column Orlicz-Hardy space holds: for 0 > θ > 1 0>\theta >1 , 0 > r 0>r\leq \infty , and Φ 0 1 ( t ) = [ Φ 1 ( t ) ] 1 θ \Phi _0^{-1}(t)=[\Phi ^{-1}(t)]^{1-\theta } for t > 0 t>0 , \[ ( h Φ c ( M ) , h c ( M ) ) θ , r = h Φ 0 , r c ( M ) , \big (\mathsf {h}_\Phi ^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big )_{\theta , r}=\mathsf {h}_{\Phi _0, r}^c(\mathcal {M}), \] where h Φ 0 , r c ( M ) \mathsf {h}_{\Phi _0,r}^c(\mathcal {M}) is the noncommutative column Hardy space associated with the Orlicz-Lorentz space L Φ 0 , r L_{\Phi _0,r} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. General Holmstedt’s formulae for the 𝐾-functional;Ahmed, Irshaad;J. Funct. Spaces,2017

2. Interpolation and Φ-moment inequalities of noncommutative martingales;Bekjan, Turdebek N.;Probab. Theory Related Fields,2012

3. Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales;Bekjan, Turdebek N.;J. Funct. Anal.,2010

4. Pure and Applied Mathematics;Bennett, Colin,1988

5. Grundlehren der Mathematischen Wissenschaften, No. 223;Bergh, Jöran,1976

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3