Kähler-Ricci flow for deformed complex structures

Author:

Tian Gang,Zhang Liang,Zhu Xiaohua

Abstract

Let ( M , J 0 ) (M,J_0) be a Fano manifold which admits a Kähler-Ricci soliton, we analyze the behavior of Kähler-Ricci flow near this soliton as we deform the complex structure J 0 J_0 . First, we will establish an inequality of Lojasiewicz’s type for Perelman’s entropy along the Kähler-Ricci flow. Then we prove the convergence of Kähler-Ricci flow when the complex structure associated to the initial value lies in the kernel Z Z or negative part of the second variation operator of Perelman’s entropy. As applications, we solve the Yau-Tian-Donaldson conjecture for the existence of Kähler-Ricci solitons in the moduli space of complex structures near J 0 J_0 , and we show that the kernel Z Z corresponds to the local moduli space of Fano manifolds which are modified K K -semistable. We also prove a uniqueness theorem for Kähler-Ricci solitons.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference49 articles.

1. The index of elliptic operators. III;Atiyah, M. F.;Ann. of Math. (2),1968

2. Convergence of Ricci flows with bounded scalar curvature;Bamler, Richard;Ann. of Math. (2),2018

3. Robert Berman and David Witt Nystrom, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, arXiv:1401.8264.

4. Extremal Kähler metrics;Calabi, Eugenio,1982

5. Huai-Dong Cao, S. Hamilton, and T. Ilmanen, Gaussian densities and stability for some Ricci solitons, arXiv:0404165.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3