Linearly continuous maps discontinuous on the graphs of twice differentiable functions

Author:

Ciesielski Krzysztof,Rodríguez-Vidanes Daniel

Abstract

A function g : R n R g\colon \mathbb {R}^n\to \mathbb {R} is linearly continuous provided its restriction g g\restriction \ell to every straight line R n \ell \subset \mathbb {R}^n is continuous. It is known that the set D ( g ) D(g) of points of discontinuity of any linearly continuous g : R n R g\colon \mathbb {R}^n\to \mathbb {R} is a countable union of isometric copies of (the graphs of) f P f\restriction P , where f : R n 1 R f\colon \mathbb {R}^{n-1}\to \mathbb {R} is Lipschitz and P R n 1 P\subset \mathbb {R}^{n-1} is compact nowhere dense. On the other hand, for every twice continuously differentiable function f : R R f\colon \mathbb {R}\to \mathbb {R} and every nowhere dense perfect P R P\subset \mathbb {R} there is a linearly continuous g : R 2 R g\colon \mathbb {R}^2\to \mathbb {R} with D ( g ) = f P D(g)=f\restriction P . The goal of this paper is to show that this last statement fails, if we do not assume that f f is continuous. More specifically, we show that this failure occurs for every continuously differentiable function f : R R f\colon \mathbb {R}\to \mathbb {R} with nowhere monotone derivative, which includes twice differentiable functions f f with such property. This generalizes a recent result of professor Luděk Zajíček [On sets of discontinuities of functions continuous on all lines, arxiv.org/abs/2201.00772v1, 2022] and fully solves a problem from a 2013 paper of the first author and Timothy Glatzer [Real Anal. Exchange 38 (2012/13), pp. 377–389].

Funder

Ministerio de Ciencia e Innovación

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Sur les fonctions de variables réelles;Baire, R. L.;Ann. Mat. Pura Appl. (3),1899

2. Linearly continuous functions and 𝐹_{𝜎}-measurability;Banakh, Taras;Eur. J. Math.,2020

3. Cours d'Analyse de l'\'{E}cole Royale Polytechnique. [Course in Analysis of the \'{E}cole Royale Polytechnique];Cauchy, Augustin-Louis,1989

4. Cambridge Library Collection;Cauchy, Augustin-Louis,2009

5. Monsters in calculus;Ciesielski, Krzysztof Chris;Amer. Math. Monthly,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3