Riemann-Liouville transform and linear differential equations on the Riemann sphere

Author:

Oshima Toshio

Abstract

We study the Riemann-Liouville transformation of solutions to linear differential equations on the Riemann sphere. The transformation corresponds to the middle convolution of the equations. Under the transformation, we examine the asymptotic behavior of the solutions at the singular points of the equations. When the singular points are regular, we studied it in \cite{Ow} and solved a connection problem for the general rigid Fuchsian equations. In this paper we mainly study the case when some singular points are irregular.

Publisher

American Mathematical Society

Reference14 articles.

1. Middle convolution of Fuchsian systems and the construction of rigid differential systems;Dettweiler, Michael;J. Algebra,2007

2. Annals of Mathematics Studies;Katz, Nicholas M.,1996

3. [Ha] Yoshishige Haraoka, On Oshima’s middle convolution, Josai Mathematical Monographs 12 (2020), 19–51.

4. Linear differential equations on ℙ¹ and root systems;Hiroe, Kazuki;J. Algebra,2013

5. Sur les points singuliers des équations différentielles ordinaires du premier ordre, II;Hukuhara, Masuo;Proc. Imp. Acad. Tokyo,1935

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3