Spheres in the curve graph and linear connectivity of the Gromov boundary

Author:

Wright Alex

Abstract

We consider the curve graph in the cases where it is not a Farey graph, and show that its Gromov boundary is linearly connected. For a fixed center point c c and radius r r , we define the sphere of radius r r to be the induced subgraph on the set of vertices of distance r r from c c . We show that these spheres are always connected in high enough complexity, and prove a slightly weaker result for low complexity surfaces.

Publisher

American Mathematical Society (AMS)

Reference67 articles.

1. Finite rigid sets in curve complexes;Aramayona, Javier;J. Topol. Anal.,2013

2. Uniform hyperbolicity of the graphs of curves;Aougab, Tarik;Geom. Topol.,2013

3. [Bar20] Benjamin Barrett, Local simple connectedness of boundaries of hyperbolic groups, arXiv:2004.11650 (2020).

4. On the asymptotic dimension of the curve complex;Bestvina, Mladen;Geom. Topol.,2019

5. Constructing group actions on quasi-trees and applications to mapping class groups;Bestvina, Mladen;Publ. Math. Inst. Hautes \'{E}tudes Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3