Test for mean matrix in GMANOVA model under heteroscedasticity and non-normality for high-dimensional data

Author:

Yamada Takayuki,Himeno Tetsuto,Tillander Annika,Pavlenko Tatjana

Abstract

This paper develops a unified testing methodology for high-dimensional generalized multivariate analysis of variance (GMANOVA) models. We derive a test of the bilateral linear hypothesis on the mean matrix in a general scenario where the dimensions of the observed vector may exceed the sample size, design may be unbalanced, the population distribution may be non-normal and the underlying group covariance matrices may be unequal. The suggested methodology is suitable for many inferential problems, such as the one-way MANOVA test and the test for multivariate linear hypothesis on the mean in the polynomial growth curve model. As a key component of our test procedure, we propose a bias-corrected estimator of the Frobenius norm of the mean matrix. We derive null and non-null asymptotic distributions of the test statistic under a general high-dimensional asymptotic framework that allows the dimensionality to arbitrarily exceed the sample size of a group. The accuracy of the proposed test in a finite sample setting is investigated through simulations conducted for several high-dimensional scenarios and various underlying population distributions in combination with different within-group covariance structures. For a practical demonstration we consider a daily Canadian temperature dataset that exhibits group structure, and conclude that the interaction of latitude and longitude has no effect to predict the temperature.

Publisher

American Mathematical Society (AMS)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference23 articles.

1. Wiley Series in Probability and Statistics;Anderson, T. W.,2003

2. Limiting behavior of eigenvalues in high-dimensional MANOVA via RMT;Bai, Zhidong;Ann. Statist.,2018

3. Effect of high dimension: by an example of a two sample problem;Bai, Zhidong;Statist. Sinica,1996

4. Two-sample test of high dimensional means under dependence;Cai, T. Tony;J. R. Stat. Soc. Ser. B. Stat. Methodol.,2014

5. High-dimensional sparse MANOVA;Cai, T. Tony;J. Multivariate Anal.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3