Non-adaptive estimation for degenerate diffusion processes

Author:

Gloter Arnaud,Yoshida Nakahiro

Abstract

We consider a degenerate system of stochastic differential equations. The first component of the system has a parameter θ 1 \theta _1 in a non-degenerate diffusion coefficient and a parameter θ 2 \theta _2 in the drift term. The second component has a drift term with a parameter θ 3 \theta _3 and no diffusion term. Parametric estimation of the degenerate diffusion system is discussed under a sampling scheme. We investigate the asymptotic behavior of the joint quasi-maximum likelihood estimator for ( θ 1 , θ 2 , θ 3 ) (\theta _1,\theta _2,\theta _3) . The estimation scheme is non-adaptive. The estimator incorporates information of the increments of both components, and under this construction, we show that the asymptotic variance of the estimator for θ 1 \theta _1 is smaller than the one for standard estimator based on the first component only, and that the convergence of the estimator for θ 3 \theta _3 is much faster than for the other parameters. By simulation studies, we compare the performance of the joint quasi-maximum likelihood estimator with the adaptive and one-step estimators investigated in Gloter and Yoshida [Electron. J. Statist 15 (2021), no. 1, 1424–1472].

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3