An induction theorem for groups acting on trees

Author:

Weissman Martin

Abstract

If G G is a group acting on a locally finite tree X X , and S \mathscr {S} is a G G -equivariant sheaf of vector spaces on X X , then its compactly-supported cohomology is a representation of G G . Under a finiteness hypothesis, we prove that if H c 0 ( X , S ) H_c^0(X, \mathscr {S}) is an irreducible representation of G G , then H c 0 ( X , S ) H_c^0(X, \mathscr {S}) arises by induction from a vertex or edge stabilizing subgroup.

If G \boldsymbol {\mathrm {G}} is a reductive group over a nonarchimedean local field F F , then Schneider and Stuhler realize every irreducible supercuspidal representation of G = G ( F ) G = \boldsymbol {\mathrm {G}}(F) in the degree-zero cohomology of a G G -equivariant sheaf on its reduced Bruhat-Tits building X X . When the derived subgroup of G \boldsymbol {\mathrm {G}} has relative rank one, X X is a tree. An immediate consequence is that every such irreducible supercuspidal representation arises by induction from a compact-mod-center open subgroup.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference9 articles.

1. Annals of Mathematics Studies;Bushnell, Colin J.,1993

2. [Car] Lisa Carbone, On the classification of rank 1 groups over non-archimedean local fields, Lecture notes from a 𝑝-adic groups seminar at Harvard University.

3. Supercuspidal representations: an exhaustion theorem;Kim, Ju-Lee;J. Amer. Math. Soc.,2007

4. Classification of the irreducible representations of the automorphism groups of Bruhat-Tits trees;Ol′šanskiĭ, G. I.;Funkcional. Anal. i Prilo\v{z}en.,1977

5. Representation theory and sheaves on the Bruhat-Tits building;Schneider, Peter;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3