On aspherical presentations of groups

Author:

Ivanov Sergei

Abstract

The Whitehead asphericity conjecture claims that if A R \langle \, \mathcal {A} \, \| \, \mathcal {R} \, \rangle is an aspherical group presentation, then for every S R \mathcal {S} \subset \mathcal {R} the subpresentation A S \langle \, \mathcal {A} \, \| \, \mathcal {S} \, \rangle is also aspherical. This conjecture is generalized for presentations of groups with periodic elements by introduction of almost aspherical presentations. It is proven that the generalized Whitehead asphericity conjecture (which claims that every subpresentation of an almost aspherical presentation is also almost aspherical) is equivalent to the original Whitehead conjecture and holds for standard presentations of free Burnside groups of large odd exponent, Tarski monsters and some others. Next, it is proven that if the Whitehead conjecture is false, then there is an aspherical presentation E = A R z E = \langle \, \mathcal {A} \, \| \, \mathcal {R} \cup z \, \rangle of the trivial group E E , where the alphabet A \mathcal {A} is finite or countably infinite and z A z \in \mathcal {A} , such that its subpresentation A R \langle \, \mathcal {A} \, \| \, \mathcal {R} \, \rangle is not aspherical. It is also proven that if the Whitehead conjecture fails for finite presentations (i.e., with finite A \mathcal {A} and R \mathcal {R} ), then there is a finite aspherical presentation A R \langle \, \mathcal {A} \, \| \, \mathcal {R} \, \rangle , R = { R 1 , R 2 , , R n } \mathcal {R} = \{ R_{1}, R_{2}, \dots , R_{n} \} , such that for every S R \mathcal {S} \subseteq \mathcal {R} the subpresentation A S \langle \, \mathcal {A} \, \| \, \mathcal {S} \, \rangle is aspherical and the subpresentation A R 1 R 2 , R 3 , , R n \langle \, \mathcal {A} \, \| \, R_{1}R_{2}, R_{3}, \dots , R_{n}\, \rangle of aspherical A R 1 R 2 , R 2 , R 3 , , R n \langle \, \mathcal {A} \, \| \, R_{1}R_{2}, R_{2}, R_{3}, \dots , R_{n}\, \rangle is not aspherical. Now suppose a group presentation H = A R H = \langle \, \mathcal {A} \, \| \, \mathcal {R} \, \rangle is aspherical, x A x \not \in \mathcal {A} , W ( A x ) W(\mathcal {A} \cup x) is a word in the alphabet ( A x ) ± 1 (\mathcal {A} \cup x)^{\pm 1} with nonzero sum of exponents on x x , and the group H H naturally embeds in G = A x R W ( A x ) G = \langle \, \mathcal {A} \cup x \, \| \, \mathcal {R} \cup W(\mathcal {A} \cup x) \, \rangle . It is conjectured that the presentation G = A x R W ( A x ) G = \langle \, \mathcal {A} \cup x \, \| \, \mathcal {R} \cup W(\mathcal {A} \cup x) \, \rangle is aspherical if and only if G G is torsion free. It is proven that if this conjecture is false and G = A x R W ( A x ) G = \langle \, \mathcal {A} \cup x \, \| \, \mathcal {R} \cup W(\mathcal {A} \cup x) \, \rangle is a counterexample, then the integral group ring Z ( G ) \mathbb {Z}(G) of the torsion free group G G will contain zero divisors. Some special cases where this conjecture holds are also indicated.

Publisher

American Mathematical Society (AMS)

Subject

General Mathematics

Reference22 articles.

1. Abelian and central extensions of aspherical groups;Ashmanov, I. S.;Izv. Vyssh. Uchebn. Zaved. Mat.,1985

2. Free groups and handlebodies;Andrews, J. J.;Proc. Amer. Math. Soc.,1965

3. Equations over groups and groups with one defining relation;Brodskiĭ, S. D.;Uspekhi Mat. Nauk,1980

4. On the second homotopy group;Gutiérrez, Mauricio A.;Quart. J. Math. Oxford Ser. (2),1981

5. Some remarks on a problem of J. H. C. Whitehead;Howie, James;Topology,1983

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Andrews–Curtis groups and the Andrews–Curtis conjecture;Journal of Group Theory;2007-01-23

2. On balanced presentations of the trivial group;Inventiones mathematicae;2006-04-25

3. On the Asphericity of LOT-Presentations of Groups;Journal of Group Theory;2005-01-01

4. THE ASPHERICITY AND FREIHEITSSATZ FOR CERTAIN LOT-PRESENTATIONS OF GROUPS;International Journal of Algebra and Computation;2001-06

5. An Asphericity Conjecture and Kaplansky Problem on Zero Divisors;Journal of Algebra;1999-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3