Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem

Author:

Linke A.,Merdon C.,Neilan M.,Neumann F.

Abstract

Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a nonstandard discretization of the right-hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-robust scheme with low regularity. The numerical analysis applies divergence-free H 1 H^1 -conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a priori error estimates will be presented for the (first-order) nonconforming Crouzeix–Raviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right-hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference45 articles.

1. N. Ahmed, A. Linke, and C. Merdon, On really locking-free mixed methods for the transient incompressible Stokes equations, SIAM Journal on Numerical Analysis (2017), 1–24, accepted. WIAS Preprint 2368.

2. A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements;Belenli, Mine Akbas;Appl. Math. Lett.,2015

3. D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII (R. Vichnevetsky, D. Knight, and G. Richter, eds.), IMACS, 1992, pp. 28–34.

4. Optimal and pressure-independent 𝐿² velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions;Brennecke, C.;J. Comput. Math.,2015

5. Texts in Applied Mathematics;Brenner, Susanne C.,2008

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3