Rank-deficient representations in the theta correspondence over finite fields arise from quantum codes

Author:

Montealegre-Mora Felipe,Gross David

Abstract

Let V V be a symplectic vector space and let μ \mu be the oscillator representation of Sp ( V ) \operatorname {Sp}(V) . It is natural to ask how the tensor power representation μ t \mu ^{\otimes t} decomposes. If V V is a real vector space, then the theta correspondence asserts that there is a one-one correspondence between the irreducible subrepresentations of Sp ( V ) \operatorname {Sp}(V) and the irreps of an orthogonal group O ( t ) O(t) . It is well-known that this duality fails over finite fields. Addressing this situation, Gurevich and Howe have recently assigned a notion of rank to each Sp ( V ) \operatorname {Sp}(V) representation. They show that a variant of the Theta correspondence continues to hold over finite fields, if one restricts attention to subrepresentations of maximal rank. The nature of the rank-deficient components was left open. Here, we show that all rank-deficient Sp ( V ) \operatorname {Sp}(V) -subrepresentations arise from embeddings of lower-order tensor products of μ \mu and μ ¯ \bar \mu into μ t \mu ^{\otimes t} . The embeddings live on spaces that have been studied in quantum information theory as tensor powers of self-orthogonal Calderbank-Shor-Steane (CSS) quantum codes. We then find that the irreducible Sp ( V ) \operatorname {Sp}(V) -subrepresentations of μ t \mu ^{\otimes t} are labelled by the irreps of orthogonal groups O ( r ) O(r) acting on certain r r -dimensional spaces for r t r\leq t . The results hold in odd charachteristic and the “stable range” t 1 2 dim V t\leq \frac 12 \dim V . Our work has implications for the representation theory of the Clifford group. It can be thought of as a generalization of the known characterization of the invariants of the Clifford group in terms of self-dual codes.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference28 articles.

1. Wiley Series in Discrete Mathematics and Optimization;Alon, Noga,2016

2. A reverse engineering approach to the Weil representation;Aubert, Anne-Marie;Cent. Eur. J. Math.,2014

3. A Robert Calderbank and Peter W Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54 (1996), no. 2, 1098.

4. Peter J Cameron, Notes on classical groups, (2000), available at \url{http://www.maths.qmul.ac.uk/ pjc/class_{g}ps/cg.pdf}.

5. Wai Kiu Chan, Arithmetic of quadratic forms, (2019), available at \url{http://wkchan.faculty.wesleyan.edu/files/2019/04/qflecturenotes.pdf}.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3