Constructing hyperelliptic curves with surjective Galois representations

Author:

Anni Samuele,Dokchitser Vladimir

Abstract

In this paper we show how to explicitly write down equations of hyperelliptic curves over Q \mathbb {Q} such that for all odd primes \ell the image of the mod  \ell Galois representation is the general symplectic group. The proof relies on understanding the action of inertia groups on the \ell -torsion of the Jacobian, including at primes where the Jacobian has non-semistable reduction. We also give a framework for systematically dealing with primitivity of symplectic mod  \ell Galois representations.

The main result of the paper is the following. Suppose n = 2 g + 2 n=2g+2 is an even integer that can be written as a sum of two primes in two different ways, with none of the primes being the largest primes less than n n (this hypothesis is expected to hold for all g 0 , 1 , 2 , 3 , 4 , 5 , 7 , g\neq 0,1,2,3,4,5,7, and 13 13 ). Then there is an explicit N Z N\in \mathbb {Z} and an explicit monic polynomial f 0 ( x ) Z [ x ] f_0(x)\in \mathbb {Z}[x] of degree n n , such that the Jacobian J J of every curve of the form y 2 = f ( x ) y^2=f(x) has Gal ( Q ( J [ ] ) / Q ) GSp 2 g ( F ) \operatorname {Gal}(\mathbb {Q}(J[\ell ])/\mathbb {Q})\cong \operatorname {GSp}_{2g}(\mathbb {F}_\ell ) for all odd primes \ell and Gal ( Q ( J [ 2 ] ) / Q ) S 2 g + 2 \operatorname {Gal}(\mathbb {Q}(J[2])/\mathbb {Q})\cong S_{2g+2} , whenever f ( x ) Z [ x ] f(x)\in \mathbb {Z}[x] is monic with f ( x ) f 0 ( x ) mod N f(x)\equiv f_0(x) \bmod {N} and with no roots of multiplicity greater than 2 2 in F ¯ p \overline {\mathbb {F}}_p for any p N p\nmid N .

Funder

Engineering and Physical Sciences Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Products of hyperelliptic Jacobians with maximal Galois image;Proceedings of the American Mathematical Society;2024-01-26

2. A user's guide to the local arithmetic of hyperelliptic curves;Bulletin of the London Mathematical Society;2022-05-05

3. Arithmetic of hyperelliptic curves over local fields;Mathematische Annalen;2022-02-20

4. Tame torsion and the tame inverse Galois problem;Mathematische Annalen;2021-04-27

5. Every 7‐Dimensional abelian variety over Qp has a reducible ℓ‐adic Galois representation;Bulletin of the London Mathematical Society;2021-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3