A manifold of planar triangular meshes with complete Riemannian metric

Author:

Herzog Roland,Loayza-Romero Estefanía

Abstract

Shape spaces are fundamental in a variety of applications including image registration, morphing, matching, interpolation, and shape optimization. In this work, we consider two-dimensional shapes represented by triangular meshes of a given connectivity. We show that the collection of admissible configurations representable by such meshes forms a smooth manifold. For this manifold of planar triangular meshes we propose a geodesically complete Riemannian metric. It is a distinguishing feature of this metric that it preserves the mesh connectivity and prevents the mesh from degrading along geodesic curves. We detail a symplectic numerical integrator for the geodesic equation in its Hamiltonian formulation. Numerical experiments show that the proposed metric keeps the cell aspect ratios bounded away from zero and thus avoids mesh degradation along arbitrarily long geodesic curves.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Riemannian geometry for efficient analysis of protein dynamics data;Proceedings of the National Academy of Sciences;2024-08-09

2. Repulsive Shells;ACM Transactions on Graphics;2024-07-19

3. A discretize-then-optimize approach to PDE-constrained shape optimization;ESAIM: Control, Optimisation and Calculus of Variations;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3