Embeddings of Decomposition Spaces

Author:

Voigtlaender Felix

Abstract

Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two?

A decomposition space D ( Q , L p , Y ) \mathcal {D}(\mathcal {Q}, L^p, Y) is determined by a covering Q = ( Q i ) i I \mathcal {Q} = (Q_i)_{i \in I} of the frequency domain, an integrability exponent p p , and a sequence space Y C I {Y \subset \mathbb {C}^I} . Given these ingredients, the decomposition space norm of a distribution g g is defined as g D ( Q , L p , Y ) = ( F 1 ( φ i g ^ ) L p ) i I Y , { \left \Vert g \right \Vert _{\mathcal {D}(\mathcal {Q}, L^p, Y)} = \left \Vert \left ( \left \Vert \mathcal {F}^{-1} \left ( \varphi _{i} \cdot \widehat {g} \right ) \right \Vert _{L^{p}} \right )_{i \in I} \right \Vert _{Y} } , where ( φ i ) i I (\varphi _i)_{i \in I} is a suitable partition of unity for Q \mathcal {Q} .

We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) D ( Q , L p 1 , Y ) D ( P , L p 2 , Z ) \mathcal {D}(\mathcal {Q},L^{p_1},Y) \hookrightarrow \mathcal {D}(\mathcal {P},L^{p_2},Z) , mostly concentrating on the case where Y = w q 1 ( I ) Y = \ell _{w}^{q_{1}} ( I ) and Z = v q 2 ( J ) Z = \ell _{v}^{q_{2}} (J) . Under suitable assumptions on Q , P \mathcal {Q}, \mathcal {P} , we will see that the relevant sufficient conditions are p 1 p 2 p_{1} \leq p_{2} and finiteness of a nested norm of the form \[ ( ( α i β j v j / w i ) i I j t ) j J s , with I j = { i I : Q i P j } for  j J . \left \Vert \left ( \left \Vert \left ( \alpha _{i} \beta _{j} \cdot v_{j} / w_{i} \right )_{ i \in I_{j}} \right \Vert _{\ell ^{t}} \right )_{j\in J} \right \Vert _{\ell ^{s}} \, , \quad \text {with} \quad I_{j} = \left \{ i \in I \,:\, Q_{i} \cap P_{j} \neq \varnothing \right \} \quad \text {for } j \in J \,. \] Like the sets I j I_j , the exponents t , s t, s and the weights α , β \alpha , \beta only depend on the quantities used to define the decomposition spaces.

In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings.

These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of p 1 , p 2 p_1, p_2 , our criteria yield a complete characterization for the existence of the embedding. The same holds for arbitrary values of p 1 , p 2 p_1, p_2 under more strict assumptions on the coverings.

We also prove a rigidity result, namely that—for ( p 1 , q 1 ) ( 2 , 2 ) (p_{1}, q_{1}) \neq (2, 2) —two decomposition spaces D ( Q , L p 1 , w q 1 ) \mathcal {D}(\mathcal {Q}, L^{p_1}, \ell _w^{q_1}) and D ( P , L p 2 , v q 2 ) \mathcal {D}(\mathcal {P}, L^{p_2}, \ell _v^{q_2}) can only coincide if their “ingredients” are equivalent, that is, if p 1 = p 2 p_{1} = p_{2} and q 1 = q 2 q_{1} = q_{2} and if the coverings Q , P \mathcal {Q}, \mathcal {P} and the weights w , v w, v are equivalent in a suitable sense.

The resulting embedding theory is illustrated by applications to α \alpha -modulation and Besov spaces. All known embedding results for these spaces are special cases of our approach; often, we improve considerably upon the state of the art.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dilational symmetries of decomposition and coorbit spaces;Applied and Computational Harmonic Analysis;2024-03

2. Did the Affordable Care Act's Medicaid eligibility expansions crowd out private health insurance coverage?;Journal of Policy Analysis and Management;2023-12-12

3. Classification of anisotropic Triebel-Lizorkin spaces;Mathematische Annalen;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3