Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster

Author:

Bors Alexander,Giudici Michael,Praeger Cheryl

Abstract

For a finite group G G , we denote by ω ( G ) \omega (G) the number of A u t ( G ) Aut(G) -orbits on G G , and by o ( G ) o(G) the number of distinct element orders in G G . In this paper, we are primarily concerned with the two quantities d ( G ) ω ( G ) o ( G ) \mathfrak {d}(G)≔\omega (G)-o(G) and q ( G ) ω ( G ) / o ( G ) \mathfrak {q}(G)≔\omega (G)/o(G) , each of which may be viewed as a measure for how far G G is from being an AT-group in the sense of Zhang (that is, a group with ω ( G ) = o ( G ) \omega (G)=o(G) ). We show that the index | G : R a d ( G ) | |G:Rad(G)| of the soluble radical R a d ( G ) Rad(G) of G G can be bounded from above both by a function in d ( G ) \mathfrak {d}(G) and by a function in q ( G ) \mathfrak {q}(G) and o ( R a d ( G ) ) o(Rad(G)) . We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group M M .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference66 articles.

1. [ABL{\etalchar{+}}] R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh, and R. Wilson, ATLAS of Finite Group Representations – Version 3, \url{http://brauer.maths.qmul.ac.uk/Atlas/v3/}, online resource.

2. On finite groups with few automorphism orbits;Bastos, Raimundo;Comm. Algebra,2016

3. The cyclic structure of maximal tori in finite classical groups;Buturlakin, A. A.;Algebra Logika,2007

4. Finite groups with a large automorphism orbit;Bors, Alexander;J. Algebra,2019

5. [Bor23a] A. Bors, OrbOrd, GitHub repository, \url{https://github.com/AlexanderBors/OrbOrd/tree/main}.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3