Reconstructing orbit closures from their boundaries

Author:

Apisa Paul,Wright Alex

Abstract

We introduce and study diamonds of G L + ( 2 , R ) \mathrm {GL}^+(2, \mathbb {R}) -invariant subvarieties of Abelian and quadratic differentials, which allow us to recover information on an invariant subvariety by simultaneously considering two degenerations, and which provide a new tool for the classification of invariant subvarieties. We classify a surprisingly rich collection of diamonds where the two degenerations are contained in “trivial” invariant subvarieties. Our main results have been applied to classify large collections of invariant subvarieties; the statement of those results do not involve diamonds, but their proofs rely on them.

Publisher

American Mathematical Society (AMS)

Reference51 articles.

1. Symplectic and isometric 𝑆𝐿(2,ℝ)-invariant subbundles of the Hodge bundle;Avila, Artur;J. Reine Angew. Math.,2017

2. Rank 2 affine manifolds in genus 3;Aulicino, David;J. Differential Geom.,2020

3. Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1);Aulicino, David;Geom. Topol.,2016

4. Classification of higher rank orbit closures in ℋ^{ℴ𝒹𝒹}(4);Aulicino, David;J. Eur. Math. Soc. (JEMS),2016

5. 𝐺𝐿₂ℝ orbit closures in hyperelliptic components of strata;Apisa, Paul;Duke Math. J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3