Quantum trees which maximize higher eigenvalues are unbalanced

Author:

Rohleder Jonathan

Abstract

The isoperimetric problem of maximizing all eigenvalues of the Laplacian on a metric tree graph within the class of trees of a given average edge length is studied. It turns out that, up to rescaling, the unique maximizer of the k k -th positive eigenvalue is the star graph with three edges of lengths 2 k 1 2 k - 1 , 1 1 and 1 1 . This complements the previously known result that the first nonzero eigenvalue is maximized by all equilateral star graphs and indicates that optimizers of isoperimetric problems for higher eigenvalues may be less balanced in their shape—an observation which is known from numerical results on the optimization of higher eigenvalues of Laplacians on Euclidean domains.

Funder

Vetenskapsrådet

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics,Analysis,Algebra and Number Theory

Reference24 articles.

1. Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians;Antunes, Pedro R. S.;J. Optim. Theory Appl.,2012

2. Quantum graphs which optimize the spectral gap;Band, Ram;Ann. Henri Poincar\'{e},2017

3. Edge connectivity and the spectral gap of combinatorial and quantum graphs;Berkolaiko, Gregory;J. Phys. A,2017

4. Surgery principles for the spectral analysis of quantum graphs;Berkolaiko, Gregory;Trans. Amer. Math. Soc.,2019

5. Maximization of the second non-trivial Neumann eigenvalue;Bucur, Dorin;Acta Math.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3