Long-time error bounds of low-regularity integrators for nonlinear Schrödinger equations

Author:

Feng Yue,Maierhofer Georg,Schratz Katharina

Abstract

We introduce a new non-resonant low-regularity integrator for the cubic nonlinear Schrödinger equation (NLSE) allowing for long-time error estimates which are optimal in the sense of the underlying partial differential equation. The main idea thereby lies in treating the zeroth mode exactly within the discretization. For long-time error estimates, we rigorously establish the error bounds of different low-regularity integrators for the NLSE with small initial data characterized by a dimensionless parameterε(0,1]\varepsilon \in (0, 1]. We begin with the low-regularity integrator for the quadratic NLSE in which the integral is computed exactly and the improved uniform first-order convergence inHrH^ris proven atO(ετ)O(\varepsilon \tau )for solutions inHrH^rwithr>1/2r > 1/2up to the timeTε=T/εT_{\varepsilon } = T/\varepsilonwith fixedT>0T > 0. Then, the improved uniform long-time error bound is extended to a symmetric second-order low-regularity integrator in the long-time regime. For the cubic NLSE, we design new non-resonant first-order and symmetric second-order low-regularity integrators which treat the zeroth mode exactly and rigorously carry out the error analysis up to the timeTε=T/ε2T_{\varepsilon } = T/\varepsilon ^2. With the help of the regularity compensation oscillation technique, the improved uniform error bounds are established for the new non-resonant low-regularity schemes, which further reduces the long-time error by a factor ofε2\varepsilon ^2compared with classical low-regularity integrators for the cubic NLSE. Numerical examples are presented to validate the error estimates and compare with the classical time-splitting methods in the long-time simulations.

Funder

European Commission

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference55 articles.

1. F. Abdullaev, S. Darmanyan, and P. Khabibullaev, Optical Solitons, Springer-Verlag, New York, 1993.

2. Error analysis of a class of semi-discrete schemes for solving the Gross-Pitaevskii equation at low regularity;Alama Bronsard, Yvonne;J. Comput. Appl. Math.,2023

3. Y. Alama Bronsard, A symmetric low-regularity integrator for the nonlinear Schrödinger equation, arXiv:2301.13109 (2023).

4. Y. Alama Bronsard, Y. Bruned, and K. Schratz, Low regularity integrators via decorated tress, arXiv:2202.01171 (2022).

5. Y. Alama Bronsard, Y. Bruned, G. Maierhofer and K. Schratz, Symmetric resonance based integrators and forest formulae, arXiv:2305.16737 (2023).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3