Geometry of logarithmic derivations of hyperplane arrangements

Author:

Denham Graham,Steiner Avi

Abstract

We study the Hadamard product of the linear forms defining a hyperplane arrangement with those of its dual, which we view as generating an ideal in a certain polynomial ring. We use this ideal, which we call the ideal of pairs, to study logarithmic derivations and critical set varieties of arrangements in a way which is symmetric with respect to matroid duality. Our main result exhibits the variety of the ideal of pairs as a subspace arrangement whose components correspond to cyclic flats of the arrangement. As a corollary, we are able to give geometric explanations of some freeness and projective dimension results due to Ziegler and Kung–Schenck.

Publisher

American Mathematical Society

Reference21 articles.

1. Lagrangian geometry of matroids;Ardila, Federico;J. Amer. Math. Soc.,2023

2. Critical points and resonance of hyperplane arrangements;Cohen, D.;Canad. J. Math.,2011

3. The maximum likelihood degree;Catanese, Fabrizio;Amer. J. Math.,2006

4. Toric and tropical compactifications of hyperplane complements;Denham, Graham;Ann. Fac. Sci. Toulouse Math. (6),2014

5. A geometric deletion-restriction formula;Denham, Graham;Adv. Math.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3