Sampling-based methods for multi-block optimization problems over transport polytopes

Author:

Hu Yukuan,Li Mengyu,Liu Xin,Meng Cheng

Abstract

This paper focuses on multi-block optimization problems over transport polytopes, which underlie various applications including strongly correlated quantum physics and machine learning. Conventional block coordinate descent-type methods for the general multi-block problems store and operate on the matrix variables directly, resulting in formidable expenditure for large-scale settings. On the other hand, optimal transport problems, as a special case, have attracted extensive attention and numerical techniques that waive the use of the full matrices have recently emerged. However, it remains nontrivial to apply these techniques to the multi-block, possibly nonconvex problems with theoretical guarantees. In this work, we leverage the benefits of both sides and develop novel sampling-based block coordinate descent-type methods, which are equipped with either entropy regularization or Kullback-Leibler divergence. Each iteration of these methods solves subproblems restricted on the sampled degrees of freedom. Consequently, they involve only sparse matrices, which amounts to considerable complexity reductions. We explicitly characterize the sampling-induced errors and establish convergence and asymptotic properties for the methods equipped with the entropy regularization. Numerical experiments on typical strongly correlated electron systems corroborate their superior scalability over the methods utilizing full matrices. The advantage also enables the first visualization of approximate optimal transport maps between electron positions in three-dimensional contexts.

Funder

National Key Research and Development Program of China

Publisher

American Mathematical Society (AMS)

Reference84 articles.

1. Near-optimal Entrywise Sampling for Data Matrices;Achlioptas, D.,2013

2. Fast computation of low-rank matrix approximations;Achlioptas, Dimitris;J. ACM,2007

3. Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization;Ahookhosh, Masoud;Comput. Optim. Appl.,2021

4. Optimal subsampling for large-scale quantile regression;Ai, Mingyao;J. Complexity,2021

5. Constrained overdamped Langevin dynamics for symmetric multimarginal optimal transportation;Alfonsi, Aurélien;Math. Models Methods Appl. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3