Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices

Author:

Frommer Andreas,Rinelli Michele,Schweitzer Marcel

Abstract

We consider the problem of estimating the trace of a matrix function f ( A ) f(A) . In certain situations, in particular if f ( A ) f(A) cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3