Global existence and asymptotic behavior of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions

Author:

Shen Weixi,Zheng Songmu,Zhu Peicheng

Abstract

This paper is concerned with global existence, uniqueness, and asymptotic behavior, as time tends to infinity, of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions. The constitutive assumptions for the Helmholtz free energy include the model for the study of phase transitions in shape memory alloys. To describe phase transitions between different configurations of crystal lattices, we work in a framework in which the strain u u belongs to L {L^\infty } . It is shown that for any initial data of (strain, velocity, absolute temperature) ( u 0 , v 0 , θ 0 ) L × W 0 1 , × H 1 \left ( {u_0}, {v_0}, {\theta _0} \right ) \in \\ {L^\infty } \times W_0^{1, \infty } \times {H^1} , there is a unique global solution ( u , v , θ ) C ( [ 0 , + ] ; L ) × C ( 0 , + ) ; W 0 1 , ) L ( [ 0 , + ) ; W 1 , ) × C ( [ 0 , + ) ; H 1 ) \left ( u, v, \theta \right ) \in C\left ( \left [ 0, + \infty \right ]; {L^\infty } \right ) \times C\left ( 0, + \infty \right ); \\ \left . W_0^{1, \infty } \right ) \cap {L^\infty }\left ( \left [ 0, + \infty ); {W^{1, \infty }} \right ) \times C\left ( \left [ 0, + \infty \right ); {H^1} \right ) \right . . Results concerning the asymptotic behavior as time goes to infinity are obtained.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference19 articles.

1. H. W. Alt, K. H. Hoffmann, M. Niezgódka, and J. Sprekels, A numerical study of structural phase transitions in shape memory alloys, Inst. Math. Univ. Augsburg, preprint No. 90, 1985

2. On the existence of solutions to the equation 𝑢_{𝑡𝑡}=𝑢_{𝑥𝑥𝑡}+𝜎(𝑢ₓ)ₓ;Andrews, Graham;J. Differential Equations,1980

3. Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity;Andrews, G.;J. Differential Equations,1982

4. On a one-dimensional nonlinear thermoviscoelastic model for structural phase transitions in shape memory alloys;Chen, Zhi Ming;J. Differential Equations,1994

5. Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity;Dafermos, C. M.;SIAM J. Math. Anal.,1982

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory;Waves in Random and Complex Media;2021-04-08

2. Nonlinear viscoelasticity of strain rate type: an overview;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-01

3. Global Regularity of Solutions for a One-dimensional Nuclear Fluid with Non-monotone Pressure;Acta Mathematicae Applicatae Sinica, English Series;2019-09

4. Analytic Inequalities and Their Applications in PDEs;Operator Theory: Advances and Applications;2017

5. Global attractor for thermoelasticity in shape memory alloys without viscosity;Mathematical Methods in the Applied Sciences;2015-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3