Jordan decompositions of cocenters of reductive 𝑝-adic groups

Author:

He Xuhua,Kim Ju-Lee

Abstract

Cocenters of Hecke algebras H \mathcal {H} play an important role in studying mod \ell or C \mathbb C harmonic analysis on connected p p -adic reductive groups. On the other hand, the depth r r Hecke algebra H r + \mathcal {H}_{r^+} is well suited to study depth r r smooth representations. In this paper, we study depth r r rigid cocenters H ¯ r + r i g \overline {\mathcal {H}}^\mathrm {rig}_{r^+} of a connected reductive p p -adic group over rings of characteristic zero or p \ell \neq p . More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth r r rigid cocenter, hence find an explicit basis of H ¯ r + r i g \overline {\mathcal {H}}^\mathrm {rig}_{r^+} .

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference26 articles.

1. Refined anisotropic 𝐾-types and supercuspidal representations;Adler, Jeffrey D.;Pacific J. Math.,1998

2. Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive 𝑝-adic group;Adler, Jeffrey D.;Michigan Math. J.,2002

3. Good product expansions for tame elements of 𝑝-adic groups;Adler, Jeffrey D.;Int. Math. Res. Pap. IMRP,2008

4. A new proof of the Howe conjecture;Barbasch, Dan;J. Amer. Math. Soc.,2000

5. Trace Paley-Wiener theorem for reductive 𝑝-adic groups;Bernstein, J.;J. Analyse Math.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3