Adaptive symplectic model order reduction of parametric particle-based Vlasov–Poisson equation

Author:

Hesthaven Jan,Pagliantini Cecilia,Ripamonti Nicolò

Abstract

High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov–Poisson equations. Since the problem’s nondissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov–Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.

Funder

Air Force Office of Scientific Research

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference66 articles.

1. Structure preserving model reduction of parametric Hamiltonian systems;Afkham, Babak Maboudi;SIAM J. Sci. Comput.,2017

2. D. Anderson, R. Fedele, and M. Lisak, A tutorial presentation of the two stream instability and Landau damping, Amer. J. Phys. 69 (2001), no. 12, 1262–1266.

3. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations;Barrault, Maxime;C. R. Math. Acad. Sci. Paris,2004

4. G. Berge, Landau damping in a plasma, lecture notes, University of Bergen, 1969.

5. An improved approximation algorithm for the column subset selection problem;Boutsidis, Christos,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3