Analysis of the shifted boundary method for the Poisson problem in domains with corners

Author:

Atallah Nabil,Canuto Claudio,Scovazzi Guglielmo

Abstract

The shifted boundary method (SBM) is an approximate domain method for boundary value problems, in the broader class of unfitted/embedded/immersed methods. It has proven to be quite efficient in handling problems with complex geometries, ranging from Poisson to Darcy, from Navier-Stokes to elasticity and beyond. The key feature of the SBM is a shift in the location where Dirichlet boundary conditions are applied—from the true to a surrogate boundary—and an appropriate modification (again, a shift) of the value of the boundary conditions, in order to reduce the consistency error. In this paper we provide a sound analysis of the method in smooth domains and in domains with corners, highlighting the influence of geometry and distance between exact and surrogate boundaries upon the convergence rate. We consider the Poisson problem with Dirichlet boundary conditions as a model and we first detail a procedure to obtain the crucial shifting between the surrogate and the true boundaries. Next, we give a sufficient condition for the well-posedness and stability of the discrete problem. The behavior of the consistency error arising from shifting the boundary conditions is thoroughly analyzed, for smooth boundaries and for boundaries with corners and edges. The convergence rate is proven to be optimal in the energy norm, and is further enhanced in the L 2 L^2 -norm.

Funder

Army Research Office

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The virtual element method on polygonal pixel–based tessellations;Journal of Computational Physics;2024-12

2. The Shifted Boundary Method in Isogeometric Analysis;Computer Methods in Applied Mechanics and Engineering;2024-10

3. A weighted shifted boundary method for immersed moving boundary simulations of Stokes' flow;Journal of Computational Physics;2024-08

4. A High-Order Shifted Boundary Virtual Element Method for Poisson Equations on 2D Curved Domains;Journal of Scientific Computing;2024-05-09

5. A shifted boundary method based on extension operators;Computer Methods in Applied Mechanics and Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3