Representation Theory of Geigle-Lenzing Complete Intersections

Author:

Herschend Martin,Iyama Osamu,Minamoto Hiroyuki,Oppermann Steffen

Abstract

Weighted projective lines, introduced by Geigle and Lenzing in 1987, are important objects in representation theory. They have tilting bundles, whose endomorphism algebras are the canonical algebras introduced by Ringel. The aim of this paper is to study their higher dimensional analogs. First, we introduce a certain class of commutative Gorenstein rings R R graded by abelian groups L \mathbb {L} of rank 1 1 , which we call Geigle-Lenzing complete intersections. We study the stable category C M _ L R \underline {\mathsf {CM}}^{\mathbb {L}}R of Cohen-Macaulay representations, which coincides with the singularity category D s g L ( R ) \mathsf {D}^{\mathbb {L}}_{\mathrm {sg}}(R) . We show that C M _ L R \underline {\mathsf {CM}}^{\mathbb {L}}R is triangle equivalent to D b ( m o d A C M ) \mathsf {D}^{\mathrm {b}}(\mathsf {mod} A^{\mathrm {CM}}) for a finite dimensional algebra A C M A^{\mathrm {CM}} , which we call the CM-canonical algebra. As an application, we classify the ( R , L ) (R,\mathbb {L}) that are Cohen-Macaulay finite. We also give sufficient conditions for ( R , L ) (R,\mathbb {L}) to be d d -Cohen-Macaulay finite in the sense of higher Auslander-Reiten theory. Secondly, we study a new class of non-commutative projective schemes in the sense of Artin-Zhang, i.e. the category c o h X = m o d L R / m o d 0 L R \mathsf {coh}\mathbb {X}=\mathsf {mod}^{\mathbb {L}}R/\mathsf {mod}^{\mathbb {L}}_0R of coherent sheaves on the Geigle-Lenzing projective space X \mathbb {X} . Geometrically this is the quotient stack X = [ X / G ] \mathbb {X}=[X/G] for X = S p e c R { R + } X={\mathrm {Spec}}\,R\setminus \{R_+\} and G = S p e c k [ L ] G={\mathrm {Spec}}\,k[\mathbb {L}] . We show that D b ( c o h X ) \mathsf {D}^{\mathrm {b}}(\mathsf {coh}\mathbb {X}) is triangle equivalent to D b ( m o d A c a ) \mathsf {D}^{\mathrm {b}}(\mathsf {mod} A^{ca}) for a finite dimensional algebra A c a A^{\mathrm {ca}} , which we call a d d -canonical algebra. We study when X \mathbb {X} is d d -vector bundle finite, and when X \mathbb {X} is derived equivale’nt to a d d -representation infinite algebra in the sense of higher Auslander-Reiten theory. Our d d -canonical algebras provide a rich source of d d -Fano and d d -anti-Fano algebras in non-commutative algebraic geometry. We also observe Orlov-type semiorthogonal decompositions of D s g L ( R ) \mathsf {D}_{\mathrm {sg}}^{\mathbb {L}}(R) and D b ( c o h X ) \mathsf {D}^{b}(\mathsf {coh}\mathbb {X}) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference98 articles.

1. Gromov-Witten theory of Deligne-Mumford stacks;Abramovich, Dan;Amer. J. Math.,2008

2. Stable categories of Cohen-Macaulay modules and cluster categories;Amiot, Claire;Amer. J. Math.,2015

3. London Mathematical Society Lecture Note Series,2007

4. Noncommutative projective schemes;Artin, M.;Adv. Math.,1994

5. London Mathematical Society Student Texts;Simson, Daniel,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3