Multiple quadrature with central differences on one line

Author:

Salzer Herbert E.

Abstract

The coefficients A 2 m n A_{2m}^n in the n-fold quadrature formulas for the stepwise integration of (1) y ( n ) = f ( x , y , y , , y ( n 1 ) ) {y^{(n)}} = f(x,y,y’, \cdots , {y^{(n - 1)}}) , at intervals of h, namely, for n even, (2) δ n y 0 = h n m = 1 10 ( 1 + A 2 m n δ 2 m ) f 0 + {\delta ^n}{y_0} = {h^n}\sum \nolimits _{m = 1}^{10} {(1 + A_{2m}^n{\delta ^{2m}}){f_0} + \cdots } , for n odd, (3) μ δ n y 0 = h n m = 1 10 ( 1 + A 2 m n δ 2 m ) f 0 + \mu {\delta ^n}{y_0} = {h^n}\sum \nolimits _{m = 1}^{10} {(1 + A_{2m}^n{\delta ^{2m}}){f_0} + \cdots } , are tabulated exactly for n = 1(1)6, m = 1(1)10. They were calculated from the well-known symbolic formulas (4) δ n y = ( δ / D ) n f {{\delta }^{n}}y = {{({\delta }/{D})}^{n}}f , (5) ( δ / D ) n = ( δ h / 2 sinh 1 ( δ / 2 ) ) n {{({\delta }/{D})}^{n}} = {{({{{\delta h}/{2\,\sinh }}^{-1}}({\delta }/{2}))}^{n}} and (6) μ = ( 1 + δ 2 / 4 ) 1 / 2 = 1 + δ 2 8 δ 4 128 + δ 6 1024 5 δ 8 32768 + \mu = {{(1 + {{{\delta }^{2}}}/{4})}^{{1}/{2}}} = 1 + \frac {{{\delta }^{2}}}{8}\,-\,\frac {{{\delta }^{4}}}{128} + \frac {{{\delta }^{6}}}{1024}\,-\,\frac {5{{\delta }^{8}}}{32768} + \cdots . For calculating y ( r ) {y^{(r)}} , replace n by n - r in (2) and (3). Use of (2) and (3) avoids the solution of (1) by simultaneous lower-order systems for n > 1 n > 1 , as well as mid-interval tabular arguments, requires only even-order differences, on a single line, and provides great accuracy due to rapid decrease of A 2 m n A_{2m}^n as m increases. However, the integration may be slowed down by the need to estimate and refine iteratively the later values of y , y , , y ( n 1 ) y,y’, \cdots , {y^{(n - 1)}} required in δ 2 m f 0 {\delta ^{2m}}{f_0} . Reference to earlier collected formulas of Legendre, Oppolzer, Thiele, Lindow, Salzer, Milne and Buckingham, reveals that Thiele and Buckingham come closest to (2), (3), as their works contain schemes that involve just tabular arguments throughout. For n odd, they give formulas that are based upon the series in δ 2 m {\delta ^{2m}} for ( 1 / μ ) ( δ / D ) n ({1}/{\mu }){{({\delta }/{D})}^{n}} instead of μ ( δ / D ) n \mu {{({\delta }/{D})}^{n}} as in the present arrangement.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference8 articles.

1. A. M. Legendre, Traité des Fonctions Elliptiques, v. 2, Paris, 1826, Chapter 3, p. 41-60 (For errors, see MTAC, v. 5, 1951, p. 27).

2. T. R. Oppolzer, Lehrbuch zur Bahnbestimmung der Cometen und Planeten, v. 2, W. Engelmann, Leipzig, 1880, p. 35, 53-54, 545, 596.

3. T. N. Thiele, Interpolationsrechnung, B. G. Teubner, Leipzig, 1909, p. 95-97. (Some misprints are noted in Math. Comp., v. 15, 1961, p. 321.)

4. M. Lindow, Numerische Infinitesimalrechnung, F. Dümmler, Berlin and Bonn, 1928, p. 170-171.

5. Coefficients for mid-interval numerical integration with central differences;Salzer, Herbert E.;Philos. Mag. (7),1945

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tables of Coefficients for Obtaining Central Differences from the Derivatives;Journal of Mathematics and Physics;1963-04

2. Multiple Quadrature with Backward Differences;Journal of Mathematics and Physics;1962-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3