Multiple quadrature with central differences on one line
-
Published:1962
Issue:78
Volume:16
Page:244-248
-
ISSN:0025-5718
-
Container-title:Mathematics of Computation
-
language:en
-
Short-container-title:Math. Comp.
Author:
Salzer Herbert E.
Abstract
The coefficients
A
2
m
n
A_{2m}^n
in the n-fold quadrature formulas for the stepwise integration of (1)
y
(
n
)
=
f
(
x
,
y
,
y
′
,
⋯
,
y
(
n
−
1
)
)
{y^{(n)}} = f(x,y,y’, \cdots , {y^{(n - 1)}})
, at intervals of h, namely, for n even, (2)
δ
n
y
0
=
h
n
∑
m
=
1
10
(
1
+
A
2
m
n
δ
2
m
)
f
0
+
⋯
{\delta ^n}{y_0} = {h^n}\sum \nolimits _{m = 1}^{10} {(1 + A_{2m}^n{\delta ^{2m}}){f_0} + \cdots }
, for n odd, (3)
μ
δ
n
y
0
=
h
n
∑
m
=
1
10
(
1
+
A
2
m
n
δ
2
m
)
f
0
+
⋯
\mu {\delta ^n}{y_0} = {h^n}\sum \nolimits _{m = 1}^{10} {(1 + A_{2m}^n{\delta ^{2m}}){f_0} + \cdots }
, are tabulated exactly for n = 1(1)6, m = 1(1)10. They were calculated from the well-known symbolic formulas (4)
δ
n
y
=
(
δ
/
D
)
n
f
{{\delta }^{n}}y = {{({\delta }/{D})}^{n}}f
, (5)
(
δ
/
D
)
n
=
(
δ
h
/
2
sinh
−
1
(
δ
/
2
)
)
n
{{({\delta }/{D})}^{n}} = {{({{{\delta h}/{2\,\sinh }}^{-1}}({\delta }/{2}))}^{n}}
and (6)
μ
=
(
1
+
δ
2
/
4
)
1
/
2
=
1
+
δ
2
8
−
δ
4
128
+
δ
6
1024
−
5
δ
8
32768
+
⋯
\mu = {{(1 + {{{\delta }^{2}}}/{4})}^{{1}/{2}}} = 1 + \frac {{{\delta }^{2}}}{8}\,-\,\frac {{{\delta }^{4}}}{128} + \frac {{{\delta }^{6}}}{1024}\,-\,\frac {5{{\delta }^{8}}}{32768} + \cdots
. For calculating
y
(
r
)
{y^{(r)}}
, replace n by n - r in (2) and (3). Use of (2) and (3) avoids the solution of (1) by simultaneous lower-order systems for
n
>
1
n > 1
, as well as mid-interval tabular arguments, requires only even-order differences, on a single line, and provides great accuracy due to rapid decrease of
A
2
m
n
A_{2m}^n
as m increases. However, the integration may be slowed down by the need to estimate and refine iteratively the later values of
y
,
y
′
,
⋯
,
y
(
n
−
1
)
y,y’, \cdots , {y^{(n - 1)}}
required in
δ
2
m
f
0
{\delta ^{2m}}{f_0}
. Reference to earlier collected formulas of Legendre, Oppolzer, Thiele, Lindow, Salzer, Milne and Buckingham, reveals that Thiele and Buckingham come closest to (2), (3), as their works contain schemes that involve just tabular arguments throughout. For n odd, they give formulas that are based upon the series in
δ
2
m
{\delta ^{2m}}
for
(
1
/
μ
)
(
δ
/
D
)
n
({1}/{\mu }){{({\delta }/{D})}^{n}}
instead of
μ
(
δ
/
D
)
n
\mu {{({\delta }/{D})}^{n}}
as in the present arrangement.
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,Computational Mathematics,Algebra and Number Theory
Reference8 articles.
1. A. M. Legendre, Traité des Fonctions Elliptiques, v. 2, Paris, 1826, Chapter 3, p. 41-60 (For errors, see MTAC, v. 5, 1951, p. 27). 2. T. R. Oppolzer, Lehrbuch zur Bahnbestimmung der Cometen und Planeten, v. 2, W. Engelmann, Leipzig, 1880, p. 35, 53-54, 545, 596. 3. T. N. Thiele, Interpolationsrechnung, B. G. Teubner, Leipzig, 1909, p. 95-97. (Some misprints are noted in Math. Comp., v. 15, 1961, p. 321.) 4. M. Lindow, Numerische Infinitesimalrechnung, F. Dümmler, Berlin and Bonn, 1928, p. 170-171. 5. Coefficients for mid-interval numerical integration with central differences;Salzer, Herbert E.;Philos. Mag. (7),1945
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|