On the minimal polynomial of Gauss periods for prime powers

Author:

Gurak S.

Abstract

For a positive integer m m , set ζ m = exp ( 2 π i / m ) \zeta _{m}=\exp (2\pi i/m) and let Z m \textbf {Z}_{m}^{*} denote the group of reduced residues modulo m m . Fix a congruence group H H of conductor m m and of order f f . Choose integers t 1 , , t e t_{1},\dots ,t_{e} to represent the e = ϕ ( m ) / f e=\phi (m)/f cosets of H H in Z m \textbf {Z}_{m}^{*} . The Gauss periods \[ θ j = x H ζ m t j x ( 1 j e ) \displaylines { \theta _{j} =\sum _{x \in H} \zeta _{m}^{t_{j}x} \;\;\; (1 \leq j \leq e) } \] corresponding to H H are conjugate and distinct over Q \textbf {Q} with minimal polynomial \[ g ( x ) = x e + c 1 x e 1 + + c e 1 x + c e . \displaylines { g(x) = x^{e} + c_{1}x^{e-1} + \cdots + c_{e-1} x + c_{e}. } \] To determine the coefficients of the period polynomial g ( x ) g(x) (or equivalently, its reciprocal polynomial G ( X ) = X e g ( X 1 ) ) G(X)=X^{e}g(X^{-1})) is a classical problem dating back to Gauss. Previous work of the author, and Gupta and Zagier, primarily treated the case m = p m=p , an odd prime, with f > 1 f >1 fixed. In this setting, it is known for certain integral power series A ( X ) A(X) and B ( X ) B(X) , that for any positive integer N N \[ G ( X ) A ( X ) B ( X ) p 1 f ( mod X N ) \displaylines { G(X) \equiv A(X)\cdot B(X)^{\frac {p-1}{f}} \;\;\;(\textrm {mod}\;X^{N}) } \] holds in Z [ X ] \textbf {Z}[X] for all primes p 1 ( mod f ) p \equiv 1(\textrm {mod}\; f) except those in an effectively determinable finite set. Here we describe an analogous result for the case m = p α m=p^{\alpha } , a prime power ( α > 1 \alpha > 1 ). The methods extend for odd prime powers p α p^{\alpha } to give a similar result for certain twisted Gauss periods of the form \[ ψ j = i p x H ( t j x p ) ζ p α t j x ( 1 j e ) , \displaylines { \psi _{j} = i^{*} \sqrt {p} \sum _{x \in H} (\frac {t_{j}x}{p}) \zeta _{p^{\alpha }}^{t_{j}x} \;\;(1 \leq j \leq e),} \] where ( p ) (\frac { }{p}) denotes the usual Legendre symbol and i = i ( p 1 ) 2 4 i^{*}= i^{\frac {(p-1)^{2}}{4}} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference13 articles.

1. Canadian Mathematical Society Series of Monographs and Advanced Texts;Berndt, Bruce C.,1998

2. Pure and Applied Mathematics, Vol. 20;Borevich, A. I.,1966

3. On computing factors of cyclotomic polynomials;Brent, Richard P.;Math. Comp.,1993

4. L.E. Dickson, Elementary Theory of Equations, Wiley, New York.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on a standard model for Galois rings;Applicable Algebra in Engineering, Communication and Computing;2023-06-22

2. The Story of Algebraic Numbers in the First Half of the 20th Century;Springer Monographs in Mathematics;2018

3. On the elements of sets with even partition function;The Ramanujan Journal;2014-10-09

4. POLYNOMIALS FOR HYPER-KLOOSTERMAN SUMS;International Journal of Number Theory;2008-12

5. Explicit values of multi-dimensional Kloosterman sums for prime powers, II;Mathematics of Computation;2008-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3