Nontrivial Galois module structure of cyclotomic fields

Author:

Conrad Marc,Replogle Daniel

Abstract

We say a tame Galois field extension L / K L/K with Galois group G G has trivial Galois module structure if the rings of integers have the property that O L \mathcal {O}_{L} is a free O K [ G ] \mathcal {O}_{K}[G] -module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l l so that for each there is a tame Galois field extension of degree l l so that L / K L/K has nontrivial Galois module structure. However, the proof does not directly yield specific primes l l for a given algebraic number field K . K. For K K any cyclotomic field we find an explicit l l so that there is a tame degree l l extension L / K L/K with nontrivial Galois module structure.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imaginary quadratic fields satisfying the Hilbert–Speiser type condition for a small prime p;Acta Arithmetica;2007

2. Note on the rings of integers of certain tame 2-galois extensions over a number field;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2006-12

3. Cyclotomic Swan subgroups and primitive roots;Finite Fields and Their Applications;2005-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3