On zeros of Mellin transforms of 𝑆𝐿₂(𝑍) cusp forms

Author:

Ferguson H. R. P.,Major R. D.,Powell K. E.,Throolin H. G.

Abstract

We compute zeros of Mellin transforms of modular cusp forms for S L 2 ( Z ) S{L_2}({\mathbf {Z}}) . Such Mellin transforms are eigenforms of Hecke operators. We recall that, for all weights k and all dimensions of cusp forms, the Mellin transforms of cusp forms have infinitely many zeros of the form k / 2 + t 1 k/2 + t\sqrt { - 1} , i.e., infinitely many zeros on the critical line. A new basis theorem for the space of cusp forms is given which, together with the Selberg trace formula, renders practicable the explicit computations of the algebraic Fourier coefficients of cusp eigenforms required for the computations of the zeros. The first forty of these Mellin transforms corresponding to cusp eigenforms of weight k 50 k \leqslant 50 and dimension 4 \leqslant 4 are computed for the sections of the critical strips, σ + t 1 \sigma + t\sqrt { - 1} , k 1 > 2 σ > k + 1 k - 1 > 2\sigma > k + 1 , 40 t 40 - 40 \leqslant t \leqslant 40 . The first few zeros lie on the respective critical lines k / 2 + t 1 k/2 + t\sqrt { - 1} and are simple. A measure argument, depending upon the Riemann hypothesis for finite fields, is given which shows that Hasse-Weil L-functions (including the above) lie among Dirichlet series which do satisfy Riemann hypotheses (but which need not have functional equations nor analytic continuations).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference53 articles.

1. M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York. 1965, P. J. Davis, Section 6: Gamma Function and Related Functions.

2. Sur certaines séries de Dirichlet;Barrucand, Pierre;C. R. Acad. Sci. Paris S\'{e}r. A-B,1969

3. Wiley Series in Probability and Mathematical Statistics;Billingsley, Patrick,1979

4. On the zeros of the Riemann zeta function in the critical strip;Brent, Richard P.;Math. Comp.,1979

5. La conjecture de Weil. I;Deligne, Pierre;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3