Points on 𝑦=𝑥² at rational distance

Author:

Campbell Garikai

Abstract

Nathaniel Dean asks the following: Is it possible to find four nonconcyclic points on the parabola y = x 2 y=x^2 such that each of the six distances between pairs of points is rational? We demonstrate that there is a correspondence between all rational points satisfying this condition and orbits under a particular group action of rational points on a fiber product of (three copies of) an elliptic surface. In doing so, we provide a detailed description of the correspondence, the group action and the group structure of the elliptic curves making up the (good) fibers of the surface. We find for example that each elliptic curve must contain a point of order 4. The main result is that there are infinitely many rational distance sets of four nonconcyclic (rational) points on y = x 2 y=x^2 . We begin by giving a brief history of the problem and by placing the problem in the context of a more general, long-standing open problem. We conclude by giving several examples of solutions to the problem and by offering some suggestions for further work.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference13 articles.

1. William Anderson, William Simons, J. G. Mauldon and James C. Smith. Elementary Problems and Solutions: A Dense Subset of the Unit Circle (E 2697). American Mathematical Monthly. 86(3):225, Mar. 1979.

2. C. Batut, K. Belabas, D. Benardi, H. Cohen and M. Olivier. User’s Guide to PARI-GP. \url{ftp://megrez.math.u-bordeaux.fr/pub/pari}, 1998. (See also \url{http://pari.home.ml.org}.)

3. Andrew Bremner and Richard K. Guy. A Dozen Difficult Diophantine Dilemmas. American Mathematical Monthly, 95(1):31-36, Jan. 1998.

4. Andrew Bremner, Arizona State University. Rational Points on 𝑦=𝑥². Personal communication. Dec. 2001.

5. John Cremona. mwrank. \url{http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/}, 2002.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. POINTS ON HYPERBOLAS AT RATIONAL DISTANCE;International Journal of Number Theory;2012-05-16

2. On uniform boundedness of a rational distance set in the plane;Comptes Rendus Mathematique;2012-02

3. On Some Rational Triangles;Mediterranean Journal of Mathematics;2011-02-18

4. On a Question of Erdős and Ulam;Discrete & Computational Geometry;2009-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3