The resolution of the Gibbs phenomenon for spherical harmonics

Author:

Gelb Anne

Abstract

Spherical harmonics have been important tools for solving geophysical and astrophysical problems. Methods have been developed to effectively implement spherical harmonic expansion approximations. However, the Gibbs phenomenon was already observed by Weyl for spherical harmonic expansion approximations to functions with discontinuities, causing undesirable oscillations over the entire sphere.

Recently, methods for removing the Gibbs phenomenon for one-dimensional discontinuous functions have been successfully developed by Gottlieb and Shu. They proved that the knowledge of the first N N expansion coefficients (either Fourier or Gegenbauer) of a piecewise analytic function f ( x ) f(x) is enough to recover an exponentially convergent approximation to the point values of f ( x ) f(x) in any subinterval in which the function is analytic.

Here we take a similar approach, proving that knowledge of the first N N spherical harmonic coefficients yield an exponentially convergent approximation to a spherical piecewise smooth function f ( θ , ϕ ) f(\theta ,\phi ) in any subinterval [ θ 1 , θ 2 ] , ϕ [ 0 , 2 π ] [\theta _1,\theta _2], \phi \in [0,2\pi ] , where the function is analytic. Thus we entirely overcome the Gibbs phenomenon.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference12 articles.

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1970.

2. E. Butkov, Mathematical Physics, Addison-Wesley Publishing Company, 1968.

3. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26;Gottlieb, David,1977

4. On the Gibbs phenomenon. I. Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function;Gottlieb, David;J. Comput. Appl. Math.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3