Minimax approximate solutions of linear boundary value problems

Author:

Schmidt Darrell,Wiggins Kenneth L.

Abstract

Define the operator D : C [ 0 , τ ] C [ 0 , τ ] D:C[0,\tau ] \to C[0,\tau ] by D [ u ] = u a 0 u a 1 u D[u] = u - {a_0}u\prime - {a_1}u where a 0 , a 1 C [ 0 , τ ] {a_0},{a_1} \in C[0,\tau ] and consider the two point boundary value problem ( BVP ) D [ y ] ( x ) = a 2 ( x ) ({\text {BVP}})\;D[y](x) = {a_2}(x) , x [ 0 , τ ] x \in [0,\tau ] , N 0 [ y ] = α 0 y ( 0 ) + α 1 y ( 0 ) = α 2 {N_0}[y] = {\alpha _0}y(0) + {\alpha _1}y\prime (0) = {\alpha _2} , N τ [ y ] = β 0 y ( τ ) + β 1 y ( τ ) = β 2 {N_\tau }[y] = {\beta _0}y(\tau ) + {\beta _1}y\prime (\tau ) = {\beta _2} where a 2 C [ 0 , τ ] {a_2} \in C[0,\tau ] , α 0 2 + α 1 2 0 \alpha _0^2 + \alpha _1^2 \ne 0 and β 0 2 + β 1 2 0 \beta _0^2 + \beta _1^2 \ne 0 . Let Π k {\Pi _k} denote the set of polynomials of degree at most k and define the approximating set P k = { p Π k : N 0 [ p ] = α 2 , N τ [ p ] = β 2 } {\mathcal {P}_k} = \{ p \in {\Pi _k}:{N_0}[p] = {\alpha _2},{N_\tau }[p] = {\beta _2}\} . Then for each k 3 k \geqslant 3 there exists p k P k {p_k} \in {\mathcal {P}_k} satisfying D [ p k ] a 2 = inf p P k D [ p ] a 2 = δ k \left \| {D[{p_k}] - {a_2}} \right \| = {\inf _{p \in {\mathcal {P}_k}}}\left \| {D[p] - {a_2}} \right \| = {\delta _k} , where \left \| \cdot \right \| denotes the uniform norm on C [ 0 , τ ] C[0,\tau ] . If the homogeneous BVP D [ y ] = 0 D[y] = 0 , N 0 [ y ] = N τ [ y ] = 0 {N_0}[y] = {N_\tau }[y] = 0 has no nontrivial solutions, then the nonhomogeneous BVP has a unique solution y and lim k p k ( i ) y ( i ) = 0 {\lim _{k \to \infty }}\left \| {p_k^{(i)} - {y^{(i)}}} \right \| = 0 for i = 0 , 1 , 2 i = 0,1,2 . If X denotes a closed subset of [ 0 , τ ] [0,\tau ] and \[ δ k , X = inf p P k max x X | D [ p ] ( x ) a 2 ( x ) | , {\delta _{k,X}} = \inf \limits _{p \in {\mathcal {P}_k}} \max \limits _{x \in X} |D[p](x) - {a_2}(x)|, \] then for each ε > 0 \varepsilon > 0 there exists δ > 0 \delta > 0 such that d ( x ) δ d(x) \leqslant \delta implies that 0 δ k δ k , X ε 0 \leqslant {\delta _k} - {\delta _{k,X}} \leqslant \varepsilon , where d ( X ) d(X) denotes the density of X in [ 0 , τ ] [0,\tau ] . Several numerical examples are given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference7 articles.

1. Approximate solutions of differential equations with deviating arguments;Allinger, Glenn;SIAM J. Numer. Anal.,1976

2. Best approximate solutions of nonlinear differential equations;Henry, Myron S.;J. Approximation Theory,1970

3. Applications of approximation theory to the initial value problem;Henry, Myron S.;J. Approximation Theory,1976

4. The approximate solution of Volterra integral equations;Petsoulas, A. G.;J. Approximation Theory,1975

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3