Chebyshev expansions for the Bessel function 𝐽_{𝑛}(𝑧) in the complex plane

Author:

Coleman J. P.,Monaghan A. J.

Abstract

Polynomial-based approximations for J 0 ( z ) {J_0}(z) and J 1 ( z ) {J_1}(z) are presented. The first quadrant of the complex plane is divided into six sectors, and separate approximations are given for | z | 8 |z| \leqslant 8 and for | z | 8 |z| \geqslant 8 on each sector. Each approximation is based on a Chebyshev expansion in which the argument of the Chebyshev polynomials is real on the central ray of the sector. The errors involved in extrapolation off the central ray are discussed. The approximation obtained for | z | 8 |z| \geqslant 8 can also be used to evaluate the Bessel functions Y 0 ( z ) {Y_0}(z) and Y 1 ( z ) {Y_1}(z) and the Hankel functions of the first and second kinds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference15 articles.

1. M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

2. The numerical solution of linear differential equations in Chebyshev series;Clenshaw, C. W.;Proc. Cambridge Philos. Soc.,1957

3. C. W. Clenshaw, Chebyshev Series for Mathematical Functions, NPL Mathematical Tables, Vol. 5, HMSO London, 1962.

4. J. P. Coleman, "A Fortran subroutine for the Bessel function 𝐽_{𝑛}(𝑥) of order 0 to 10," Comput. Phys. Comm., v. 21, 1980, pp. 109-118.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3