Computing 𝜋(𝑥): the Meissel-Lehmer method

Author:

Lagarias J. C.,Miller V. S.,Odlyzko A. M.

Abstract

E. D. F. Meissel, a German astronomer, found in the 1870’s a method for computing individual values of π ( x ) \pi (x) , the counting function for the number of primes x \leqslant x . His method was based on recurrences for partial sieving functions, and he used it to compute π ( 10 9 ) \pi ({10^9}) . D. H. Lehmer simplified and extended Meissel’s method. We present further refinements of the Meissel-Lehmer method which incorporate some new sieving techniques. We give an asymptotic running time analysis of the resulting algorithm, showing that for every ε > 0 \varepsilon > 0 it computes π ( x ) \pi (x) using at most O ( x 2 / 3 + ε ) O({x^{2/3 + \varepsilon }}) arithmetic operations and using at most O ( x 1 / 3 + ε ) O({x^{1/3 + \varepsilon }}) storage locations on a Random Access Machine (RAM) using words of length [ log 2 x ] + 1 [{\log _2}x] + 1 bits. The algorithm can be further speeded up using parallel processors. We show that there is an algorithm which, when given M RAM parallel processors, computes π ( x ) \pi (x) in time at most O ( M 1 x 2 / 3 + ε ) O({M^{ - 1}}{x^{2/3 + \varepsilon }}) using at most O ( x 1 / 3 + ε ) O({x^{1/3 + \varepsilon }}) storage locations on each parallel processor, provided M x 1 / 3 M \leqslant {x^{1/3}} . A variant of the algorithm was implemented and used to compute π ( 4 × 10 16 ) \pi (4 \times {10^{16}}) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference15 articles.

1. Addison-Wesley Series in Computer Science and Information Processing;Aho, Alfred V.,1975

2. M. A. Auslander & M. E. Hopkins, "An overview of PL.8 compiler," Proceeding of the SIGPLAN 82 Symposium on Compiler Construction, Boston, 1982.

3. On the number of primes less than a given limit;Bohman, Jan;Nordisk Tidskr. Informationsbehandling (BIT),1972

4. L. E. Dickson, History of the Theory of Numbers, Volume 1, Chapter XVIII, Chelsea, New York, 1971. (Reprint.)

5. On the exact number of primes in the arithmetic progressions 4𝑛±1 and 6𝑛±1;Hudson, Richard H.;J. Reine Angew. Math.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3