Convergence of a random particle method to solutions of the Kolmogorov equation 𝑢_{𝑡}=𝜈𝑢ₓₓ+𝑢(1-𝑢)

Author:

Puckett Elbridge Gerry

Abstract

We study a random particle method for solving the reaction-diffusion equation u t = ν u x x + f ( u ) {u_t} = \nu {u_{xx}} + f(u) which is a one-dimensional analogue of the random vortex method. It is a fractional step method in which u t = ν u x x {u_t} = \nu {u_{xx}} is solved by random walking the particles while u t = f ( u ) {u_t} = f(u) is solved with a numerical ordinary differential equation solver such as Euler’s method. We prove that the method converges when f ( u ) = u ( 1 u ) f(u) = u(1 - u) , i.e. the Kolmogorov equation, and that when the time step Δ t \Delta t is O ( N 4 1 ) O({\sqrt [4]{N}^{ - 1}}) the rate of convergence is like ln N N 4 1 \ln N \cdot \,{\sqrt [4]{N}^{ - 1}} where N denotes the number of particles. Furthermore, we show that this rate of convergence is uniform as the diffusion coefficient ν \nu tends to 0. Thus, travelling waves with arbitrarily steep wavefronts may be modeled without an increase in the computational cost. We also present the results of numerical experiments including the use of second-order time discretization and second-order operator splitting and use these results to estimate the expected value and standard deviation of the error.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference36 articles.

1. On vortex methods;Anderson, Christopher;SIAM J. Numer. Anal.,1985

2. Rates of convergence for viscous splitting of the Navier-Stokes equations;Beale, J. Thomas;Math. Comp.,1981

3. Vortex methods. I. Convergence in three dimensions;Beale, J. Thomas;Math. Comp.,1982

4. Vortex methods. I. Convergence in three dimensions;Beale, J. Thomas;Math. Comp.,1982

5. Convergence of solutions of the Kolmogorov equation to travelling waves;Bramson, Maury;Mem. Amer. Math. Soc.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3