Computing greatest common divisors and factorizations in quadratic number fields

Author:

Kaltofen Erich,Rolletschek Heinrich

Abstract

In a quadratic number field Q ( D ) {\mathbf {Q}}(\sqrt D ) , D a squarefree integer, with class number 1, any algebraic integer can be decomposed uniquely into primes, but for only 21 domains Euclidean algorithms are known. It was shown by Cohn [5] that for D 19 D \leq - 19 even remainder sequences with possibly nondecreasing norms cannot determine the GCD of arbitrary inputs. We extend this result by showing that there does not even exist an input in these domains for which the GCD computation becomes possible by allowing nondecreasing norms or remainders whose norms are not as small as possible. We then provide two algorithms for computing the GCD of algebraic integers in quadratic number fields Q ( D ) {\mathbf {Q}}(\sqrt D ) . The first applies only to complex quadratic number fields with class number 1, and is based on a short vector construction in a lattice. Its complexity is O ( S 3 ) O({S^3}) , where S is the number of bits needed to encode the input. The second algorithm allows us to compute GCD’s of algebraic integers in arbitrary number fields (ideal GCD’s if the class number is > 1 > 1 ). It requires only O ( S 2 ) O({S^2}) binary steps for fixed D, but works poorly if D is large. Finally, we prove that in any domain, the computation of the prime factorization of an algebraic integer can be reduced in polynomial time to the problem of factoring its norm into rational primes. Our reduction is based on a constructive version of a theorem by A. Thue.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving Very Sparse Rational Systems of Equations;ACM Transactions on Mathematical Software;2011-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3