An old conjecture of Erdos–Turán on additive bases

Author:

Borwein Peter,Choi Stephen,Chu Frank

Abstract

There is a 1941 conjecture of Erdős and Turán on what is now called additive basis that we restate: Conjecture 0.1(Erdős and Turán). Suppose that 0 = δ 0 > δ 1 > δ 2 > δ 3 0 = \delta _0>\delta _1>\delta _2>\delta _3\cdots is an increasing sequence of integers and \[ s ( z ) := i = 0 z δ i . s(z) : = \sum _{i=0}^\infty z^{\delta _i}. \] Suppose that \[ s 2 ( z ) := i = 0 b i z i . s^2(z) := \sum _{i=0}^\infty b_i z^i. \] If b i > 0 b_i>0 for all i i , then { b n } \{b_n\} is unbounded. Our main purpose is to show that the sequence { b n } \{b_n\} cannot be bounded by 7 7 . There is a surprisingly simple, though computationally very intensive, algorithm that establishes this.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference7 articles.

1. Questions related to the Erdős-Turán conjecture;Dowd, Martin;SIAM J. Discrete Math.,1988

2. P. Erdős and R. Frued, On Sidon-sequences and related problems, Mat. Lapok (New Ser.) (1991/2 (in Hungarian)), no. 1, 1–44.

3. On a problem of Sidon in additive number theory, and on some related problems;Erdös, P.;J. London Math. Soc.,1941

4. Old and new problems and results in combinatorial number theory: van der Waerden’s theorem and related topics;Erdős, P.;Enseign. Math. (2),1979

5. On the Erdős-Turán conjecture;Grekos, G.;J. Number Theory,2003

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3