A geometric generalization of Kaplansky’s direct finiteness conjecture

Author:

Phung Xuan Kien

Abstract

Let G G be a group and let k k be a field. Kaplansky’s direct finiteness conjecture states that every one-sided unit of the group ring k [ G ] k[G] must be a two-sided unit. In this paper, we establish a geometric direct finiteness theorem for endomorphisms of symbolic algebraic varieties. Whenever G G is a sofic group or more generally a surjunctive group, our result implies a generalization of Kaplansky’s direct finiteness conjecture for the near ring R ( k , G ) R(k,G) which is k [ X g : g G ] k[X_g\colon g \in G] as a group and which contains naturally k [ G ] k[G] as the subring of homogeneous polynomials of degree one. We also prove that Kaplansky’s stable finiteness conjecture is a consequence of Gottschalk’s Surjunctivity Conjecture.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. Stable finiteness of group rings in arbitrary characteristic;Ara, Pere;Adv. Math.,2002

2. Linear cellular automata over modules of finite length and stable finiteness of group rings;Ceccherini-Silberstein, Tullio;J. Algebra,2007

3. Injective linear cellular automata and sofic groups;Ceccherini-Silberstein, Tullio;Israel J. Math.,2007

4. Springer Monographs in Mathematics;Ceccherini-Silberstein, Tullio,2010

5. On injective endomorphisms of symbolic schemes;Ceccherini-Silberstein, Tullio;Comm. Algebra,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On linear non-uniform cellular automata: Duality and dynamics;Linear Algebra and its Applications;2024-05

2. On the Garden of Eden theorem for non-uniform cellular automata;Nonlinearity;2024-04-30

3. Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts;Ergodic Theory and Dynamical Systems;2024-02-15

4. Stable finiteness of twisted group rings and noisy linear cellular automata;Canadian Journal of Mathematics;2023-05-22

5. Linear Cellular Automata;Springer Monographs in Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3