Isomorphism problems and groups of automorphisms for Ore extensions 𝐾[𝑥][𝑦;𝛿] (zero characteristic)

Author:

Bavula V.

Abstract

Let Λ ( f ) = K [ x ] [ y ; f d d x ] \Lambda (f) = K[x][y; f\frac {d}{dx} ] be an Ore extension of a polynomial algebra K [ x ] K[x] over a field K K of characteristic zero where f K [ x ] f\in K[x] . For a given polynomial f f , the automorphism group of the algebra Λ ( f ) \Lambda (f) is explicitly described. The polynomial case Λ ( 0 ) = K [ x , y ] \Lambda (0) = K[x,y] and the case of the Weyl algebra A 1 = K [ x ] [ y ; d d x ] A_1= K[x][y; \frac {d}{dx} ] were done by Jung [J. Reine Angew. Math. 184 (1942), pp. 161–174] and van der Kulk [Nieuw Arch. Wisk. (3) 1 (1953), pp. 33–41], and Dixmier [Bul. Soc. Math. France 96 (1968), pp. 209–242], respectively. Alev and Dumas [Comm. Algebra 25 (1997), pp. 1655–1672] proved that the algebras Λ ( f ) \Lambda (f) and Λ ( g ) \Lambda (g) are isomorphic iff g ( x ) = λ f ( α x + β ) g(x) = \lambda f(\alpha x+\beta ) for some λ , α K { 0 } \lambda , \alpha \in K\backslash \{ 0\} and β K \beta \in K . Benkart, Lopes and Ondrus [Trans. Amer. Math. Soc. 367 (2015), pp. 1993–2021] gave a complete description of the set of automorphism groups of algebras Λ ( f ) \Lambda (f) . In this paper we complete the picture, i.e. given the polynomial f f we have the explicit description of the automorphism group of Λ ( f ) \Lambda (f) .

The key concepts in finding the automorphism groups are the eigenform, the eigenroot and the eigengroup of a polynomial (introduced in the paper; they are of independent interest).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Invariants du corps de Weyl sous l’action de groupes finis;Alev, J.;Comm. Algebra,1997

2. Simple 𝐷[𝑋,𝑌;𝜎,𝑎]-modules;Bavula, V. V.;Ukra\"{\i}n. Mat. Zh.,1992

3. Generalized Weyl algebras and their representations;Bavula, V. V.;Algebra i Analiz,1992

4. Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules;Bavula, Vladimir,1993

5. The simple modules of the Ore extensions with coefficients from a Dedekind ring;Bavula, V.;Comm. Algebra,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3