Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity

Author:

Cont Rama,Perkowski Nicolas

Abstract

We construct a pathwise integration theory, associated with a change of variable formula, for smooth functionals of continuous paths with arbitrary regularity defined in terms of the notion of p p th variation along a sequence of time partitions. For paths with finite p p th variation along a sequence of time partitions, we derive a change of variable formula for p p times continuously differentiable functions and show pointwise convergence of appropriately defined compensated Riemann sums.

Results for functions are extended to regular path-dependent functionals using the concept of vertical derivative of a functional. We show that the pathwise integral satisfies an “isometry” formula in terms of p p th order variation and obtain a “signal plus noise” decomposition for regular functionals of paths with strictly increasing p p th variation. For less regular ( C p 1 C^{p-1} ) functions we obtain a Tanaka-type change of variable formula using an appropriately defined notion of local time.

These results extend to multidimensional paths and yield a natural higher-order extension of the concept of “reduced rough path”. We show that, while our integral coincides with a rough path integral for a certain rough path, its construction is canonical and does not involve the specification of any rough-path superstructure.

Publisher

American Mathematical Society (AMS)

Reference30 articles.

1. Pathwise integration with respect to paths of finite quadratic variation;Ananova, Anna;J. Math. Pures Appl. (9),2017

2. Temps locaux et intégration stochastique pour les processus de Dirichlet;Bertoin, Jean,1987

3. Probability and its Applications (New York);Biagini, Francesca,2008

4. Sur la 𝑝-variation d’une surmartingale continue;Bruneau, Michel,1979

5. Stochastic integration with respect to fractional Brownian motion;Carmona, Philippe;Ann. Inst. H. Poincar\'{e} Probab. Statist.,2003

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Itô stochastic differentials;Stochastic Processes and their Applications;2024-05

2. Fractional Ito calculus;Transactions of the American Mathematical Society, Series B;2024-03-27

3. Weierstrass bridges;Transactions of the American Mathematical Society;2024-02-20

4. An extension of the stochastic sewing lemma and applications to fractional stochastic calculus;Forum of Mathematics, Sigma;2024

5. Quasi-geometric rough paths and rough change of variable formula;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3