Expected local topology of random complex submanifolds

Author:

Gayet Damien

Abstract

Let n 2 n\geq 2 and r { 1 , , n 1 } r\in \{1, \cdots , n-1\} be integers, M M be a compact smooth Kähler manifold of complex dimension n n , E E be a holomorphic vector bundle with complex rank r r and equipped with a Hermitian metric h E h_E , and L L be an ample holomorphic line bundle over M M equipped with a metric h h with positive curvature form. For any d N d\in \mathbb N large enough, we equip the space of holomorphic sections H 0 ( M , E L d ) H^0(M,E\otimes L^d) with the natural Gaussian measure associated to h E h_E , h h and its curvature form. Let U M U\subset M be an open subset with smooth boundary. We prove that the average of the ( n r ) (n-r) -th Betti number of the vanishing locus in U U of a random section s s of H 0 ( M , E L d ) H^0(M,E\otimes L^d) is asymptotic to ( n 1 r 1 ) d n U c 1 ( L ) n {n-1 \choose r-1} d^n\int _U c_1(L)^n for large d d . On the other hand, the average of the other Betti numbers is o ( d n ) o(d^n) . The first asymptotic recovers the classical deterministic global algebraic computation. Moreover, such a discrepancy in the order of growth of these averages is new and contrasts with all known other smooth Gaussian models, in particular the real algebraic one. We prove a similar result for the affine complex Bargmann-Fock model.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference32 articles.

1. Springer Monographs in Mathematics;Adler, Robert J.,2007

2. Michele Ancona, Exponential rarefaction of maximal real algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS) (2020), \url{https://ems.press/journals/jems/articles/8736481}.

3. Denis Auroux, Théorèmes de structure des variétés symplectiques compactes via des techniques presque complexes, PhD thesis, 1999.

4. Percolation of random nodal lines;Beffara, Vincent;Publ. Math. Inst. Hautes \'{E}tudes Sci.,2017

5. Russo-Seymour-Welsh estimates for the Kostlan ensemble of random polynomials;Beliaev, D.;Ann. Inst. Henri Poincar\'{e} Probab. Stat.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3